Контент-платформа Pandia.ru:     2 872 000 материалов , 128 197 пользователей.     Регистрация


Золотое сечение. Ряд Фибоначчи

 просмотров

Приложение 1

ЗОЛОТОЕ СЕЧЕНИЕ. РЯД ФИБОНАЧЧИ

Учение о золотом сечении возникло в результате тщательного исследования природы чисел. Считается, что деление отрезка в среднем и крайнем отношении впервые было осуществлено 2500 лет назад великим философом и геометром древней Греции Пифагором. Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. Пифагор показал, что отрезок единичной длины AB можно разделить на две части точкой С так, что отношение большей части (CB = x) к меньшей (AC = 1-x) будет равняться отношению всего отрезка (AB=1) к большей части (CB): CB/AC=(AC+CB)/CB, или x/(1-x)=1/x. Отсюда следует алгебраическое выражение x2 + x – 1 = 0. Положительным корнем этого уравнения является (-1+)/2, так что отношения в рассматриваемой пропорции равны: 1/x = 1,61803...Число 1,618 в честь древнегреческого скульптора Фидия обозначается буквой Ф. В соответствии с величиной Ф единичный отрезок точкой С делится в отношении 0,382+0,618=1, что соответствует пропорции

1:0,618 = 0,618:0,382 = 1,618.

Такое отношение принято называть золотой пропорцией, а соответствующее деление отрезка - золотым сечением.

То есть, золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a : b = b : c или с : b = b : а.


Рис. 1. Геометрическое изображение золотой пропорции

Естественно, что сущность этой пропорции не меняется от умножения (или деления) ее членов на любое число (за исключением нуля). Письменные свидетельства, известные человечеству, о золотой пропорции впервые приводятся в “Началах” Эвклида (3 в. до н. э.).

В 1202 г. вышло в свет сочинение "Liber abacci" итальянского математика Леонардо Пизанского ( г. г.), известного, однако, больше как Фибоначчи. В книге было представлено решение задачи о размножении пары кроликов в течение года (12 месяцев). В результате получился рекуррентный ряд чисел - 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144 и т. д., где каждое число равно сумме двух предыдущих; эта последовательность чисел получила название ряда чисел Фибоначчи. Очевидно, что последовательность чисел Фибоначчи можно представить формулой

fn+2 = fn +fn+1,

где n - порядковый номер числа Фибоначчи. Позднее было установлено, что не только классический ряд Фибоначчи, но и любой ряд с таким же рекуррентным свойством {fn+2 = fn +fn+1}, но с другими начальными членами a, b порождает последовательность a+b, a+2b, 2a+3b, 3a+5b, 5a+8b и т. д., отношение соседних членов которой по мере удаления от начала стремится к величине Ф=1,618. Примером такой последовательности может служить ряд Люка - 1, 3, 4, 7, 11, 18, 29, 47 и т. д.

Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей не только в математике, но и в искусстве, науке, технике и природе.

Мы в соцсетях:


Подпишитесь на рассылку:
Посмотрите по Вашей теме:

Сечение

Проекты по теме:

Основные порталы, построенные редакторами

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыБюджетФинансовые услугиКредитыКомпанииЭкономикаМакроэкономикаМикроэкономикаНалоги
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьер

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказЭкономикаРегионы РоссииПрограммы регионов
История: СССРИстория РоссииРоссийская ИмперияВремя2016 год
Окружающий мир: Животные • (Домашние животные) • НасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШкола
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовМуниципалитетыМуниципальные районыМуниципальные образованияМуниципальные программыБюджетные организацииОтчетыПоложенияПостановленияРегламентыТермины(Научная терминология)

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства