Контент-платформа Pandia.ru:     2 872 000 материалов , 128 197 пользователей.     Регистрация


Ачкасов Владимир Николаевич «Разработка средств автоматизации проектирования радиационно - стойкой микроэлектроннойой базы для нового поколения систем управления двойного назначения» (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3
 просмотров


На правах рукописи

 

АЧКАСОВ Владимир Николаевич

РАЗРАБОТКА СРЕДСТВ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ
РАДИАЦИОННО - СТОЙКОЙ МИКРОЭЛЕКТРОННОЙОЙ БАЗЫ ДЛЯ НОВОГО ПОКОЛЕНИЯ СИСТЕМ УПРАВЛЕНИЯ
ДВОЙНОГО НАЗНАЧЕНИЯ

05.13.12 – Системы автоматизации проектирования

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Воронеж – 2008

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Воронежская государственная лесотехническая академия»

Научный консультант: доктор технических наук, профессор,

академик РАН Гуляев Юрий Васильевич.

Официальные оппоненты: доктор технических наук, профессор,

Прохоров Николай Леонидович,

доктор технических наук, профессор

Питолин Владимир Михайлович,

доктор технических наук, профессор

Стародубцев Виктор Сергеевич.

Ведущая организация: Московский государственный технический

университет им. Н. Э.Баумана (г. Москва).

Защита диссертации состоится 20 марта 2009 г. в 1000 на заседании диссертационного совета Д 212.034.03 при Воронежской государственной лесотехнической академии , ауд. 118.

С диссертацией можно ознакомиться в библиотеке Воронежской государственной лесотехнической академии.

Автореферат разослан 17 февраля 2009 г.

Ученый секретарь

диссертационного совета Е. А. Аникеев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Разработка управляющих вычислительных комплексов (УВК) двойного назначения относится к приоритетному направлению технической политики нашего государства, так как они применяются в оборонной, научной, социальной и других жизненно-важных сферах деятельности. При этом особую роль играют бортовые комплексы, которые применяются для систем управления (СУ) авиационных и космических летательных аппаратов, атомных электростанций, ядерных реакторов, химических производств, так как они имеют стратегическое значение для национальной безопасности страны. Главной задачей на ближайшую перспективу является достижения научной, технической и технологической независимости от ведущих иностранных государств.

При этом ключевой задачей является обеспечение работоспособности СУ при воздействии ионизирующего излучения (ИИ), электромагнитных полей, механических нагрузок в широком диапазоне температур. Данная задача может быть решена только с применением комплексных мероприятий по совершенствованию архитектуры вычислительных систем, разработки и производства широкой функционально-ориентированной номенклатуры высокоинтегрированных микросхем, создания научной и промышленной инфраструктуры разработки, создания и испытания вычислительных комплексов, модулей и микросхем.

Среди данных мероприятий задача разработки микросхем, стойких к радиационному воздействию является особенно важной. Ее решение требует, прежде всего, совершенствования проектной среды разработки элементной базы, позволяющей разрабатывать изделия, работающие в особо жёстких условиях: радиационных и электромагнитных воздействия, широкий диапазон температур, большие механические нагрузки и т. д. При этом основной технологией является КМОП-технология, которая обеспечивает уникальные интегральные показатели: широкий спектр функциональных возможностей, высокую производительность и быстродействие, низкую потребляемую мощность, простоту изготовления и др.

Одной из основных проблем является моделирование радиационных эффектов в процессе проектирования, которое в настоящее время требует существенной модернизации. Это обусловлено коренными преобразованиями в электронной промышленности (ЭП), вследствие резкого уменьшения проектных норм, увеличения степени интеграции, созданием СБИС, включая системы на кристалле (СнК), совершенствованием традиционных и созданием новых технологий производства, что привело к усилению влияния физических процессов, в том числе и радиационного характера, степень проявления которых ранее, была пренебрежимо мала.

Следует отметить и то, что изменились условия радиационного и электромагнитного воздействия на УВК, а следовательно и на СБИС, вследствие совершенствования средств противодействия, изменение орбит полетов космических летательных аппаратов, связанное с планированием долгосрочных космических экспедиций, совершенствованием существующих и созданием новых ядерных энергетических установок. Кроме того, ужесточились требования по надежности и продолжительности функционирования аппаратуры в условиях ионизирующего излучения. Эти требования были отражены в новом комплексе государственных стандартов (КГС) «Климат-7», в котором скорректированы параметры «традиционных» видов излучения и введены новые.

Так как зарубежные средства моделирования радиационных эффектов являются самым оберегаемым секретом фирм-производителей и не продаются на мировом рынке, а известные программные комплексы, системы и подсистемы не обеспечивают моделирования всего комплекса радиационных воздействия в новых условиях для создания радиационно-стойких микросхем в области теории САПР были выдвинуты актуальные задачи, которые потребовали комплексного подхода к их решению, начиная от совершенствования физических моделей процессов и заканчиваю программной реализацией.

Диссертация выполнена по программам важнейших работ Министерства образования и науки по планам НИР и ОКР »: «Салон», «Форзац», «Разводчик», «Танк-5», «Трикута», «Истра-7» и др., а также в соответствии с межвузовской научно-технической программой И. Т.601 «Перспективные информационные технологии в высшей школе» и научным направлением Воронежской государственной лесотехнической академии (ВГЛТА) «Разработка средств автоматизации управления и проектирования (в промышленности)», «Разработка математического обеспечения проектирования СБИС двойного назначения».

Цель работы состоит в создании комплекса методов, моделей, алгоритмов и программных средств проектирования специализированных КМОП СБИС двойного назначения для нового поколения СУ.

Для ее реализации необходимо решить следующие задачи:

1. Провести анализ современного состояния средств автоматизации проектирования, обеспечивающей моделирование радиационных эффектов, определить проблемы и направления их развития;

2. Сформулировать требования, целевые задачи, принципы построения и обосновать архитектуру технических средств автоматизации проектирования специализированных КМОП СБИС двойного назначения для нового поколения СУ;

3. Обосновать выбор структуры проблемно-ориентированной программной платформы автоматизации проектирования специализированных КМОП СБИС двойного назначения для нового поколения СУ;

4. Разработать математические модели и алгоритмы моделирования тепловых, термомеханических и деградационных процессов радиационного характера в КМОП СБИС двойного назначения для нового поколения СУ;

5. Обосновать технологию формирования и осуществить реализацию лингвистического и информационного обеспечения;

6. Провести программную реализацию разработанных средств и их интеграцию в единую программную среду проектирования КМОП СБИС двойного назначения для нового поколения СУ;

7. С помощью разработанных средств разработать типовую библиотеку элементов КМОП СБИС, на основе которой создать радиационно-стойкие микросхемы, и таким образом, провести опытную эксплуатацию предложенных средств и оценить их экономическую эффективность.

Методика исследования. Для решения поставленных задач использованы: теория вычислительных систем, автоматизации проектирования, оптимизации; аппарат вычислительной математики. А также теория построения программ; методы модульного, структурного и объектно-ориентированного программирования; имитационное, структурное, и параметрическое моделирование; вычислительные эксперименты.

На защиту выносятся следующие основные научные положения:

- принципы построения, архитектура технических средств автоматизации проектирования специализированных КМОП СБИС двойного назначения;

- математические модели расчета динамических полей температур и механических напряжений при радиационном воздействии и после него;

- математические модели ионизационного тока в p-n перехода в МОП – структурах и переходных процессов в типовых элементах микросхем при воздействии импульсного ионизирующего излучения;

- математические модели деградации электропараметров типовых элементов изделий вследствие воздействия статического ионизирующего воздействия;

- математические модели базовых элементов;

- методика сбора, обработки, хранения, представления и обмена данными и особенности реализации лингвистических и информационных средств в рамках единого информационного пространства,

Научная новизна. В результате проведенного исследования получены следующие результаты, характеризующиеся научной новизной:

- принципы построения, архитектура технических средств автоматизации проектирования специализированных КМОП СБИС двойного назначения для нового поколения систем управления двойного назначения, обеспечивших унификацию технического, математического и программного обеспечения и заложивших основу создания единого информационного пространства сети дизайн-центров проектирования микросхем, блоков, модулей, вычислительных комплексов;

- математические модели расчета динамических полей температур и механических напряжений при радиационном воздействии и после него, отличающиеся учетом особенностей современной конструкции, технологии изготовления для различных амплитудно-временных и спектрально-энергетических характеристик воздействия;

- математические модели ионизационного тока в p-n перехода в МОП – структурах и переходных процессов в типовых элементах микросхем при воздействии импульсного ИИ, отличающаяся учетом особенностей субмикронных технологий, температурного режима, спектрально-энергетических и амплитудно-временных характеристик радиационного воздействия в соответствии с требованиями КГС «Климат-7»;

- математические модели деградации электропараметров типовых элементов изделий вследствие воздействия статического ИИ, отличающиеся учетом микродозиметрических радиационных эффектов, характерных для субмикронных технологий, связанных с особенностями накопления заряда в элементах конструкции в соответствии с требованиями комплекса государственных стандартов «Климат-7»;

- математические модели базовых элементов, которые отличаются описанием радиационных процессов, происходящих в МОП-структурах при воздействии импульсного и статического ИИ с учетом субмикронных технологий и требований КГС «Климат-7» на всех иерархических уровнях проектирования;

- методика сбора, обработки, хранения, представления и обмена данными и особенности реализации лингвистических и информационных средств в рамках единого информационного пространства, соответствующих базовым принципам современных информационных технологий.

Практическая значимость и результаты внедрения. На основе предложенных решений созданы и внедрены программные средства комплексного проектирования КМОП СБИС двойного назначения в (г. Воронеж), (г. Зеленоград), реализованные на единой методологической платформе и позволяющие распространить их на предприятиях аналогичного профиля. Анализ результатов внедрения показал высокую эффективность разработанных средств.

Предложенные средства проектирования радиационно-стойких изделий использовались при создании типовой библиотеки элементов радиационно-стойких СБИС, что позволило спроектировать более 500 типовых элементов, благодаря чему была созданы СБИС серий 1867, 1830, 1874.

Разработаны и внедрены обучающие программно-аппаратные комплексы, которые эффективно используются для проведения лабораторных работ, курсового и дипломного проектирования, подготовки аспирантов, соискателей, а также для непрерывной переподготовки специалистов в Воронежском государственном техническом университете (ВГТУ) на кафедре САПР.

Предложенные решения носят универсальный характер и могут использоваться при создании подобных систем в ЭП.

Апробация работы. Основные положения работы докладывались и обсуждались на: коллегиях ряда Министерств РФ, на совещаниях департамента ЭП, семинарах ведущих предприятий по разработке элементной базы моделей и блоков.

Автор выступал с докладами на:

международных конференциях: «Системные проблемы качества, математического моделирования и информационных технологий» (Сочи 2002, 2003, 2005, 2006); «Влияние внешних воздействующих факторов на элементную базу аппаратуры авиационной и космической техники» (Королев 2002, 2003); "Кибернетика.21век» (.Москва 2005); "Математические методы в технике и технологии» (Казань 2005, Воронеж 2006, Ярославль,2007); «Авиация и космонавтика» (Москва 2005); «Высокие технологии энергосбережения» (Воронеж 2005); «Наука и образование» (Воронеж 2005); «Современные проблемы борьбы с преступностью. Радиотехнические науки» (Воронеж 2006);

российских конференциях: "Радиационная стойкость электронных систем" (Москва 2002, 2003, 2005, 2006); .«Интеллектуальные информационные системы» (Воронеж 2005); «Интеллектуализация управления в социальных и экономических системах» (Воронеж 2005); «Информационные технологии» (Воронеж 2005); «Новые технологии» (Воронеж 2006); «Стойкость» (Москва 2005, 2006, 2008); «Новые технологии в научных исследованиях, проектировании, управлении, производстве» (Воронеж 2008).

Публикации результатов работы. По теме диссертации опубликовано 88 печатные работы, включая 28 работ, опубликованных в журналах определенных ВАК, 5 монографий и 5 авторских свидетельств общим объемом 1622 с (лично автором выполнено 597с).

Двадцать шесть публикаций выполнены без соавторов, личный вклад автора в работах, опубликованных в соавторстве заключается в определении целей и задач работы, разработке моделей и алгоритмов, в выполнении научно-технических исследований и анализе их результатов, в разработке основных элементов ее внедрения.

Структура и объем диссертации. Диссертация состоит из введения, шести разделов, заключения, списка использованных источников. Материал диссертации изложен на 334 страницах.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, цель, научная новизна и практическая ценность полученных результатов.

В первом разделе проведен анализ современного состояния и тенденций развития УВК нового поколения, сформулированы требования для элементной базы, на основе которой они создаются; рассмотрены вопросы состояния средств автоматизации их проектирования.. Проведена постановка задач исследования.

Современные бортовые системы управления должны отвечать требованиям: увеличения степени интеллектуализации управления, расширения функций, существенного сокращения времени подготовки и реализации всех задач управления, обеспечения заданной надежности функционирования и повышения точности выведения объекта в условиях применения современных и перспективных средств активного противодействия, значительного снижения энергопотребления, массы и габаритов.

Базовыми элементами таких систем управления являются уникальные УВК, которые прошли несколько этапов развития от простых аналоговых до мощных аналого-цифровых с иерархической структурой для параллельной реализации вычислительных процессов с самоорганизующейся архитектурой, обеспечивающей гарантированную надежность функционирования в жестких климатических условиях, больших механических нагрузок, активного противодействия в виде радиационного и электромагнитного излучения большой мощности, и различного спектрального состава.

Их разработка одна из самых сложных научно-технических проблем, требующей привлечения и тесного взаимодействия высококвалифицированных специалистов из разных областей: системо - и схемотехников изделий электронной и вычислительной техники, математиков, программистов, конструкторов, технологов и др.

Сложность ее решения определяется необходимостью комплексной увязки архитектурных принципов; системо - и схемотехнических, конструкторских и технологических решений; разработки, отладки и испытания базового программного обеспечения; научной, технической и технологической подготовки средств автоматизации разработки, производства и испытания специализированных микроэлектронных компонентов, унифицированных модулей, управляющих вычислительных комплексов и проверки их характеристик в составе систем управления в реальных условиях эксплуатации. При этом важным аспектом является достижения научно-технического прогресса в области микроэлектроники.

Устойчивой тенденцией развития является усложнение их архитектуры, повышение "интеллекта" входящих подсистем, введения автономных контуров управления и переход к распределенному вычислительному комплексу с индивидуальными специализированными вычислителями всех подсистем управления. В тоже время необходимо обеспечить минимизацию объемно-массовых характеристик, энергопотребления, простоту и преемственность развития. Важнейшее значение при этом имеет унификация (однородность) архитектуры комплексов и всех составляющих подсистем, что позволяет упростить процедуру резервирования и повысить надежность их функционирования без существенных затрат.

Одним из важнейших моментов применения управляющих вычислительных комплексов в составе бортовых систем управления является обеспечение работоспособности при воздействии на изделие специальных факторов - больших механических нагрузок и воздействия ионизирующих, а также электромагнитных излучений.

Следует отметить, что успех создания вычислительных систем и комплексов практически полностью определяется параметрами микроэлектронных компонентов, на базе которых они строятся, т. е. уровнем развития электронной промышленности.

Для создания современных вычислительных комплексов требуется применение радиационно-стойких СБИС, обладающими высокими быстродействием, помехоустойчивостью и надежностью, малыми объемно-массовыми характеристиками, низким потреблением электроэнергии с возможностью работы непосредственно от химических источников питания с большим диапазоном изменения питающих напряжений, при больших механических нагрузках и жестких климатических условий. Они должны обладать большой степенью интеграции, простотой конструкции и технологии изготовления, обеспечивающих возможность полной автоматизации проектирования, производства и испытания. Для этих целей широко применяются СБИС цифровой обработки сигнала (ЦОС) и микроконтроллеры.

Системо - и схемотехнические приемы построения СБИС должны быть ориентированы на параллельный и конвейерный способ решения всей совокупности специализированных задач и их оптимального распределения между аппаратурой и программами для минимизации аппаратурных затрат, простоты разработки, отладки и проверки базового программного обеспечения, что позволяет значительно уменьшить сроки создания систем управления и их стоимость.

Следовательно, проектирование СБИС и управляющих вычислительных комплексов на их основе невозможно без создания научной и промышленной инфраструктуры автоматизации для совместной отработки системо - и схемотехнических, конструктивных и технологических приемов создания СБИС и вычислительных модулей, базового программного обеспечения и систем управления в целом.

Рассматривая современные СБИС следует отметить следующее: площадь кристалла и число транзисторов на нем увеличивается примерно в 1,5, проектные нормы уменьшаются в 1,4 раза каждый год, а стоимость производства снижается в 2 раза каждые три года. В настоящее время проектные нормы составляют 0,1-0,05 мкм, что позволяет разместить на одном кристалле до 500 млн. транзисторов для схем с регулярной структурой. Это привело к тому, что физические явления, которые ранее были не существенны, стали значительными, а в ряде случаев и доминирующими, что потребовало модификации моделирования физических процессов, в том числе и радиационных.

Поэтому крупнейшие фирмы, создающие САПР постоянно совершенствуют свои средства проектирования. Ежегодно в их модификацию вкладываются огромные денежные средства. В настоящее время созданы средства автоматизации, способные проводить моделирование физических процессов, которые стали проявляться в современных СБИС, в том числе и радиационных эффектов. Имеется большой рынок средств моделирования, но приобрести современное проблемно-ориентированное программное обеспечение практически невозможно, так как ведущие зарубежные фирмы хотят сохранить за собой лидерство в ближайшей и долговременной перспективе в сфере разработки микроэлектроники.

Таким образом, для создания отечественной радиационно-стойкой элементной базы необходима разработка собственных средств проектирования, которые учитывали бы весь комплекс внешних факторов. Это, прежде всего, радиационные тепловые и термомеханические эффекты, деградация электоропараметров от статического ИИ и переходные ионизационные процессы. Так как радиационно-стойкие изделия в настоящее время и в ближайшей перспективе основываются на КМОП технологии, которая обеспечивает наилучшие интегральные показатели: широкий спектр функциональных возможностей, высокую производительность и быстродействие, низкую потребляемую мощность, простоту изготовления и др. все эти явления должны быть рассмотрены применительно к данному классу изделий.

При этом одним из ключевых моментов модификации САПР является новый подход к физической стороне процессов, протекающих в СБИС, разработке математического и программного обеспечения. Поэтому поставлена задача создания средств автоматизации проектирования КМОП СБИС с учетом импульсных и статических видов радиации.

Во втором разделе определены основные задачи проектирования, разработана методика проектирования, предложены базовые лингвистические средства и единая информационная платформа, обоснована архитектура технических средств и определена структура проблемно-ориентированного программного обеспечения моделирования радиационных эффектов в типовых элементах КМОП СБИС.

Основными задачами при проектировании изделий микроэлектроники для нового поколения управляющих вычислительных комплексов являются: определение требований к элементной базе по функциональным возможностям и уровню стойкости и надежности, которые в ряде случаев являются достижением определенного компромисса между функциональными возможностями и обеспечением требуемого уровня стойкости; выбор оптимальной структуры типовых логических элементов изделия за счет применения алгоритма минимизации покрытия логических функций, анализа на тестопригодность, синтеза логической схемы, предварительной логической верификации, преобразования логического базиса в схемотехнический, моделирование статических и динамических характеристик типовых логических элементов КМОП БИС с учетом радиационных воздействий, логическая верификация и моделирование неисправностей базовых функциональных блоков с учетом реальных характеристик типовых логических элементов, генерация тестов, анализ дефектов и верификации топологии.

Решение поставленных задач обеспечивается предложенной методикой автоматизации проектирования КМОП СБИС двойного назначения, отличающаяся формированием требований к элементной базе на ранней стадии проектирования с учетом радиационной стойкости, моделированием радиационных эффектов на схемотехническом и функционально-логическом уровнях в зависимости от конструктивно-технологических особенностей изготовления и требований КГС «Климат-7». Данная методика позволяет оценить работоспособность изделия от комплекса внешних факторов: импульсных (рентгеновского, гамма, нейтронного излучения) и статических (гамма, нейтронного, протонного и электронного излучений) как по отдельным видам излучения так и при комплексном воздействии, которое может осуществляться в разные временные промежутки, что соответствует реальным условиям. Предложенная методика проектирования КМОП БИС двойного применения с учетом руководящего материала «правила проектирования для технологического процесса АТ-12ДМ и АТ-20СN DP DM» легла в основу отраслевых руководящих документов и материалов.

В работе был проведен анализ возможностей наиболее популярных отечественных и зарубежных автоматизированных рабочих мест (АРМ), средств автоматизации проектирования и определены требования, которым должно удовлетворять современное лингвистическое обеспечение.

В основу их разработки положен предложенный структурно-модульный принцип описания схем на всех уровнях иерархического процесса проектирования. Предложен входной язык описания модулей типовых элементов, на всех уровнях проектирования. В понятие модуля входит как сам модуль, который выполняет определенные функции, так и процедуры проектирования. Он строиться по иерархическому принципу. Головной модуль содержит ссылки на основные подчиненные ему модули. Модуль многоуровневого описания обеспечивает представление типового элемента на основе более простых конструктивных элементов как на одном уровне иерархии проектирования, так и при прямом и обратном переходе с уровня на уровень. Таким образом, он является связующим звеном иерархического процесса проектирования, обеспечивающим возможность реализации принципа непрерывности.

Кроме того, модуль содержит описание его геометрической модели; многоуровневого представления; описания поведенческих, функционально-логических и электрофизических характеристик (в том числе и с учетом радиационных воздействий), топологии, символьного представления геометрической модели. Библиотека модулей может расширяться.

Для входного языка используется буквы алфавита и набора ключевых командных слов, которые делятся на две группы - для описания начала и конца записей и имен атрибутов остальных записей. Основной структурной единицей языка описания модулей служит запись. Тело записи заключается между ключевыми словами начала и конца и состоит из набора атрибутов, их значений.

<КЛЮЧЕВОЕ СЛОВО 1 >: :=<ИМЯ ТИПА/<КОМАНДНОЕ СЛОВО>

<ИМЯ ТИПА>: := MODUL/DELAY/PARAM/LGRAF/INP/

OUT/SUB_MOD/ATR/D_INP/G_INP/G_OUT

<КОМАНДНОЕ CЛOBO>::=END/REPEAT/END_FILE

где MODUL, DELAY, DIP, PARAM, LGRAF, INP, OUT, D_INP, G_INP, G_OUT, ATR, SUB_MOD - имена типов записи логического модуля, задержек, электрических параметров, изображение логического элемента, входа и выходов логического элемента, выводов изображения элемента, входов и выходов изображения логического элемента, произвольных атрибутов, подмодулей логического модуля соответственно;

END, END_FILE - признаки конца записи и файла;

REPERAT - оператор повторения.

Во вторую группу ключевых слов входят имена атрибутов основных записей.

В лингвистические средства также входит разработанный язык описания входных воздействий (определенные значения напряжений и токов) и задания на проектирования.

Эффективность языка обеспечивалась за счет возможностей как символьного, так и графических способов описания, использования сокращенных и командных форм описания и автоматического формирования наиболее объемных данных, рациональных процедур манипулирования данными.

Исходя из общей концепции построения информационных сред САПР, типа решаемых задач обоснованы требования к информационному обеспечению подсистемы.

В соответствии со сформулированными требованиями разработана система единой подготовки исходной информации, использующая особенности предложенного языка структурно-модульного описания схем как текстовых, так и графических данных, которые дополнены графосимволическим языком описания структур.

Для построения информационного обеспечения системы предложено использовать два типа внутренних структур – списочная с указателями и ассоциативная кольцевая. Предложена модификация кольцевой структуры обеспечения двунаправленного поиска, которая заключается в том, что первый элемент списка в кольцевой структуре имеет метку головного элемента, содержащего общие данные для всех элементов списка и каждый элемент списка включает в себя одну или несколько связок "вперед/назад". Элементы списка могут являться головными для списка эле­ментов другого типа. Это обеспечивается включением в элемент метки связи как к подчиняющим, так и подчиненным элементам структуры данных. Подобная организация массивов, содержащих координаты элементов изображе­ния позволяет выполнять выборку и вставку элементов изображения в произвольном по­рядке с достаточно малым временем поиска. Кроме того, при вводе графиче­ской информации, учитывая процедуру последующего документирования, при формировании рисунка в массивы заносятся специальные метки, позволяю­щие выполнять декомпозицию рисунка по страницам.

На основе предложенной модификации кольцевой структуры и структуры с последовательным размещением элементов проведена сравнительная оценка их эффективности по времени выборки данных. Использование моди­фикации ассоциативной кольцевой структуры данных дает преимущества по основному критерию эффективности времени выборки данных, хотя и требует при этом больших затрат памяти.

Опираясь на опыт построения технических средств в организациях и сформулированных целевых задач обоснована архитектура технических средств. Она представляет собой сетевую трехзвенную систему, построенную по модели клиент - сервер приложений - сервер данных. Основным элементом системы являются АРМ, на которых производится собственно проектирование изделий. Реализация автоматизированных рабочих мест быть проведена на основе рабочих станций, Х-терминанов или ПЭВМ с большим объемом внешней и оперативной памяти.

Все технические средства объединены в локальную вычислительную сеть. Взаимодействие АРМ и серверов осуществляется по прямым физическим магистралям с использованием сети Ethernet.

Необходимыми условиями эффективной работы средств проектирования являются надежность и быстродействие про­граммного обеспечения. Поэтому используемый сервер приложений дает значительные преимущества. Он уменьшает нагрузку и обеспечивает эффективную работу до 5 клиентов и по­зволяет значительно увеличить количество клиентов, работаю­щих с однаковым массивом данных.

Возможность масштабирования вычислительной мощности системы достигается за счет так называемой «сегментации» ра­бочих мест, иными словами, за счет распределения нагрузки между несколькими компьютерами — серверами приложений. Такое решение существенно повышает производительность и отказоустойчивость системы в условиях многопользователь­ской работы.

В работе предложена структура проблемно-ориентированной прикладной программной платформы, которая включает следующие программные блоки: управляющий, лингвистический, диалоговой обработки, графический редактор, схемотехнического моделирования, расчета параметров типовых элементов при радиационном воздействии, расчета температуры, вычисления механических напряжений, анализа тестопригодности, функционально-логического моделирования, генерации тестов, анализа дефектов.

В третьем разделе рассмотрен алгоритм оценки стойкости изделий микроэлектроники к радиационному излучению и предложенные математические модели расчета тепловых и термомеханических эффектов.

Алгоритм оценки стойкости заключается в следующем: вначале исходя из требований к аппаратуре определяется внешняя радиационная обстановка, при которой необходимо обеспечить работоспособность изделия. Затем она рассматривается как совокупность видов ионизирующего излучения со своими амплитудно-временными и спектрально-энергетическими характеристиками. Следующем этапом является моделирование тепловых, термомеханических, ионизационных и структурных эффектов. Степень их проявления и взаимодействия между собой определяется исходя из комплекса внешних факторов. Результатом моделирования является определение численного значения максимальных уровней различных видов ионизирующего излучения (в зависимости от требования технического задания), при котором изделие остается работоспособным. При этом определяются все характеристики, входящие в понятие стойкости: максимальный предельный уровень воздействия, при котором все параметры изделия находятся в пределах норм технического задания, уровень бессбойной работы, время потери работоспособности, уровень возникновения тирристорного эффекта (если он возможен), уровень катастрофического отказа. Такая оценка стойкости вначале производится расчетными и расчетно-экспериментальными методами. На ранних этапах разработки могут быть использованы упрощенные методы, а на более поздних более точные решения. На основании этих методов определяются показатели стойкости элементной базы, как в вероятностной форме, так и в виде уровней воз­действующих ионизирующих излучений. Окончательная оценка стойкости определяется на завершающем этапе при проведении испытаний полученных готовых изделий.

Предложена математическая модель расчета тепловых и термомеханических эффектов. Они возникают при воздействии на изделие рентгеновского излучения с энергией несколько десятков КЭВ, так как оно характеризуется значительным поглощением. За счет резкого выделения энергии за очень малые промежутки времени (наносекундный диапазон) в элементах конструкции и кристалле изделии наблюдается мгновенное увеличение температуры и термомеханический удар. На фоне данных явлений проявляются ионизационные эффекты.

Для моделирования этих явлений принято допущение о двух этапном протекании данных процессов: первый – увеличение температуры и возникновение термомеханического удара в момент воздействия излучения и непосредственно после него, второй – перераспределение тепла и возникновения напряжений в элементов конструкции после воздействия импульса излучения.

Обозначим через область в пространстве , занимаемую рассматриваемым изделием. Она состоит из подобластей , представляющих собой слои конструкции, то есть различные материалы. Пусть - граница области , - границы подобластей . Обозначим через часть границы , представляющую собой верхнюю поверхность корпуса, и через - нижнюю поверхность.

Введем в равномерную сетку с шагами по пространственным переменным. Причем шаги выберем таким образом, чтобы узлы сетки содержали внутренние границы . Множество внутренних узлов сетки состоит из точек пересечения гиперплоскостей , , , .

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

Мы в соцсетях:


Подпишитесь на рассылку:
Посмотрите по Вашей теме:

Радиация

Поколения и прожитые годы


Проекты по теме:

Основные порталы, построенные редакторами

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыБюджетФинансовые услугиКредитыКомпанииЭкономикаМакроэкономикаМикроэкономикаНалоги
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьер

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказЭкономикаРегионы РоссииПрограммы регионов
История: СССРИстория РоссииРоссийская ИмперияВремя2016 год
Окружающий мир: Животные • (Домашние животные) • НасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШкола
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовМуниципалитетыМуниципальные районыМуниципальные образованияМуниципальные программыБюджетные организацииОтчетыПоложенияПостановленияРегламентыТермины(Научная терминология)

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства