Вариации двадцатигранника

Математика | Эта статья также находится в списках: , , , | Постоянная ссылка

У многих конструкторов вырабатывается привычка мысленно изменять предметы и конструкции, попадающие им в руки или на глаза, в поисках более рационального решения или просто из любопытства: а что из этого выйдет? Приведенный ниже пример иллюстрирует такого рода упражнения—развлечения конструктора.

На рисунке 1 сплошными линиями показана развертка, состоящая из двадцати одинаковых равносторонних треугольников.

Рис 1.

Если начертить развертку на плотной бумаге, вырезать ее, надрезать бумагу не очень острым ножом по линиям, отделяющим треугольники друг от друга и от лапок, согнуть развертку по этим линиям в одну сторону, склеить друг с другом концы полоски, состоящей из треугольников 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, а из треугольников 1, 5, 9, 13, 17 и 3, 7, 11, 15, 19 склеить две пятигранные пирамидки, то вы будете полностью вознаграждены за свой труд. В ваших руках окажется тело, замечательное по совершенству формы,— правильный двадцатигранник (икосаэдр), имеющий двадцать одинаковых граней — равносторонних треугольников, тридцать одинаковых ребер и двенадцать выступов, состоящих из пятигранных пирамидок. Неожиданно вместо двух склеенных пирамидок их оказалось шесть пар с шестью осями, проходящими через эти пары. Икосаэдр симметричен относительно всех шести осей. Вершина каждой из двенадцати пирамидок и три угла каждой грани касаются шаровой поверхности. Остальные точки граней близки к ней. По сравнению с гранями других правильных многогранников грани икосаэдра ближе всего расположены к поверхности описанной сферы, число граней максимально, и форма его ближе всего к форме шара. Отсюда возникает возможность строить, например, карту планеты на двадцати равносторонних треугольниках, проектируя точки сферы с помощью ее радиусов на грани вписанного икосаэдра. Возможность применения этого способа может быть выяснена более глубоким анализом.

Теперь представим себе, что икосаэдр является не оболочкой, а сплошным телом. Мысленно будем изменять его форму, постепенно и равномерно срезая верхушки всех пирамидок плоскостями, перпендикулярными к их осям. Появится двенадцать новых граней в виде правильных пятиугольников, а у бывших треугольных граней срежутся уголки, они превратятся в шестиугольники с тремя новыми небольшими сторонами вместо срезанных углов. При дальнейшем срезании пирамидок пятигранники увеличиваются, а у шестигранников короткие стороны растут, длинные сокращаются и, наконец, получается новая интересная форма многогранника, состоящего из двенадцати равносторонних пятиугольников и двадцати равносторонних шестиугольников. С такой выкройки делают футбольные мячи.

Если срезать пирамидки дальше, то площадь пятиугольников продолжает возрастать, а шестиугольники становятся неравносторонними, прежние их стороны станут короче новых, и так будет продолжаться до тех пор, пока прежние стороны не исчезнут, а новые сомкнутся в треугольники. Получим новую интересную форму многогранника, состоящую из двенадцати правильных пятиугольников и двадцати равносторонних треугольников. При дальнейшем срезании материала с плоскости пятигранников они превратятся в десятигранники, а треугольники уменьшатся в своих размерах. Наступит момент, когда неравные стороны десятигранников сравняются и получится новая форма — двенадцать равносторонних десятиугольников и двадцать маленьких равносторонних треугольников. Продолжая снимать материал с плоскостей десятиугольников, в конце концов снова получим двенадцать равносторонних пятиугольников, а треугольники исчезнут. Это будет известная форма двенадцатигранника пентагон-доде-каэдра. Из таких двенадцати пластинок, но выдавленных по сфере, был изготовлен советский вымпел, посланный на Луну. На рисунке дана его развертка (рис. 2).

Рис 2.

При срезании двадцати трехгранных углов получим вместо них двадцать треугольников, пятиугольные грани превратятся в десятиугольные. Если продолжать эту операцию дальше, получим те же самые формы, что и при срезании углов у икосаэдра, но в обратном порядке и в конце концов опять получим икосаэдр, но значительно меньших размеров.

Практическая применимость рассмотренных здесь форм довольно ограниченна, они разве только могут быть использованы при огранке драгоценных камней.

Много интереснее исследовать икосаэдр не как сплошное тело, а как оболочку. В этом случае он представляет собой замкнутый объем, например, сосуд для жидкости и газа, изготовленный из плоского листа. Жесткость оболочке придают ребра. Ребра могут быть заменены стержнями или нитями, и тогда возникают другие вариации: жесткая корзинка или мягкая сетка с крупными ячейками.

Дальнейшие вариации будем производить с разверткой (рис. 1), видоизменение которой будет приводить иногда к неожиданным результатам. •

Прибавим к развертке еще четыре треугольника, как показано пунктиром на рисунке 1. Шесть равносторонних треугольников с каждой стороны ленты согнутся теперь не в пирамидки, а уложатся в плоские правильные шестиугольники и на развертке могут быть ими заменены. После склейки получим барабан, состоящий из двенадцатигранной обечайки и двух шестиугольных донышек (рис. 3).

Рис 3.

Аналогичный барабан можно получить из икосаэдра, если две противоположные пятигранные пирамидки заменить пятиугольными донышками.

Отрежем теперь от развертки треугольники 17—20. Из оставшихся треугольников 1—16 получим шестнадцатигранник с двумя четырехгранными пирамидками и одной продольной осью (рис. 4).

Рис 4.

Если срезать четырехгранные пирамидки и заменить их квадратными гранями, получим десятигранник, состоящий из восьми треугольных и двух квадратных граней (рис. 5).

Рис 5.

Отрежем теперь от развертки (рис. 1) еще четыре грани. Из оставшихся треугольников 1—12 неожиданно получается шестигранник, потому что каждая пара треугольников образовала одну грань в виде ромба (рис. 6).

 

 

 

 

Рис 6

Это ромбический додекаэдр, назовем его «ромбоидом», имеет, как и куб, шесть граней, восемь трехгранных углов и двенадцать ребер. Если его положить на одну из граней, то в нем нетрудно узнать перекошенный по диагонали куб. Если такой ромбоид сделать из двенадцати стержней вместо ребер, соединив их по углам шарнирно, то при растягивании его вдоль продольной оси стержни сложатся в палку, состоящую из трех стержней по концам и из шести посередине. При продольном сжатии этой палки стержни разойдутся сначала в вытянутый ромбоид, потом в куб, потом в сплющенный ромбоид и, наконец, уложатся в одну плоскость в виде правильного шестиугольника. Вот и идея для конструктора — табуретка и зонт, складывающиеся в виде палки.

Вариант ромбоида, сильно вытянутый вдоль своей оси (рис. 7, развертка 8), представляет особый интерес.

Рис 7

Такое тело с большим удлинением λ = 1/d (то есть с большим отношением длины 1 к толщине d), при полете ориентированное так, что ось направлена по полету, и двигающееся со скоростью, равной или большей скорости звука, вероятно, будет иметь наименьшее лобовое сопротивление по сравнению с другими телами такого же удлинения, потому что передние и задние ребра тела направлены по обтекающему потоку, а средние шесть ребер образуют с потоком очейь острые углы. Это утверждение требует еще доказательства или проверки экспериментом.

Рис 8.

Срезая у ромбоида (рис. 6) обе трехгранные пирамидки (для чего все ромбы придется разрезать пополам), опять неожиданно получим хорошо известный правильный восьмигранник — октаэдр (рис. 9). Его развертка состоит из треугольников 1, 2, 4, 6, 8, 10, 11, 12. Между октаэдром и кубом существуют «родственные» отношения, аналогичные отношениям между икосаэдром и Пентагон-додекаэдром.

Рис 9.

Срезая углы первого, получают второй через промежуточные четырнадцатигранники.

Из развертки, состоящей из треугольников 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, склеивается правильный десятигранник, состоящий из двух пятигранных пирамид, сложенных основаниями. Из треугольников 2, 4, 6, 8, 10, 12 получаем развертку правильного шестигранника, представляющего собой два приложенных друг к другу тетраэдра, а развертка тетраэдра — правильного четырехгранника — состоит из треугольников 2, 4, 6, 8 (рис. 10).

Рис 10

Интересно отметить, что у тетраэдра четыре грани и четыре выступа, поэтому из тетраэдра, срезая трехгранные углы, получим опять тетраэдр через промежуточные восьмигранники с треугольными и шестиугольными гранями.

Наконец, из двух треугольников тоже можно склеить «тело», но это будет плоский треугольник, двусторонний, то есть тело, не имеющее объема.

Итак, оказывается, что правильные многогранники можно склеивать из четного числа равносторонних треугольников. При этом из двух получается «тело без объема». Из двенадцати треугольников получается ромбоид, то есть шестигранник с ромбическими гранями или тело без объема в виде двух склеенных правильных шестиугольников. Из двадцати четырех треугольников получаем четырнадцатигранник, у которого две грани— правильные шестиугольники. Попутно предлагается задача для читателей: можно ли склеить замкнутую фигуру другим способом из четырнадцати, восемнадцати и двадцати двух равносторонних треугольников?

Рассмотрим еще одну возможность варьирования развертки, показанной на рис. 1. Если отбросить верхние и нижние зубцы и оставить только ленту, состоящую из четных номеров треугольников, а затем сложить несколько таких лент их боковыми кромками, то получим развертку, показанную на рисунке 11.

Рис 11

Развертка дана для двенадцати треугольников в каждой ленте. Начертив и вырезав эту развертку, согните ее по косым линиям в одну сторону, а по горизонтальным — в другую. В склеенном виде получаем фигуру, близкую к круглому цилиндру, но с граненой боковой поверхностью. Эта фигура получается жесткой на кручение, на изгиб, на продольное сжатие и с местной жесткостью боковой стенки. Эта вариация, пожалуй, будет наиболее ценной б практическом применении. Она может служить схемой строительной конструкции, легкой, прочной, жесткой и сейсмостойкой. Она не слишком сложна в производстве и может быть осуществлена как в стеночном варианте, так и ферменном, если ребра заменить стержнями. Во втором случае, составленная из треугольников, она будет статически определимой.

В ферменном варианте такая башня, например, может заменить однополый гиперболоид Шухова.

Если разрезать фигуру пополам, вдоль оси, то получим конструкцию покрытия в виде граненого свода. Граненость придает такой поверхности своеобразную красоту. Она пригодна для башен и покрытий. Ее развертка показана на рисунке 12.

 

 

 

 

Рис 12

Кроме представленных выше геометрических тел и конструкций, существует большое разнообразие подобных им других фигур. Вооружившись бумагой, линейкой, ножницами и клеем, каждый может заняться подобными упражнениями и, проявив фантазию, создать собственные оригинальные конструкции.

По материалам журнала “Наука и Жизнь”.

Смотрите также

Математика | Эта статья также находится в списках: , , , | Постоянная ссылка
Мы в соцсетях:




Архивы pandia.ru
Алфавит: АБВГДЕЗИКЛМНОПРСТУФЦЧШЭ Я

Новости и разделы


Авто
История · Термины
Бытовая техника
Климатическая · Кухонная
Бизнес и финансы
Инвестиции · Недвижимость
Все для дома и дачи
Дача, сад, огород · Интерьер · Кулинария
Дети
Беременность · Прочие материалы
Животные и растения
Компьютеры
Интернет · IP-телефония · Webmasters
Красота и здоровье
Народные рецепты
Новости и события
Общество · Политика · Финансы
Образование и науки
Право · Математика · Экономика
Техника и технологии
Авиация · Военное дело · Металлургия
Производство и промышленность
Cвязь · Машиностроение · Транспорт
Страны мира
Азия · Америка · Африка · Европа
Религия и духовные практики
Секты · Сонники
Словари и справочники
Бизнес · БСЕ · Этимологические · Языковые
Строительство и ремонт
Материалы · Ремонт · Сантехника