Состав типового персональный компьютер

Состав типового персональный компьютер

Обычно под набором комплектующих, объединенных понятием “типовой персональный компьютер”, понимают следующий их состав:

1.  Корпус с блоком питания;

2.  Системная (материнская) плата (motherboard);

3.  Процессор (CPU – Control Processor Unit);

4.  Оперативная память (RAM – Random Access Memory);

5.  Видеокарта;

6.  Монитор;

7.  Жесткий диск (HDD – Hard Disk Drive);

8.  Клавиатура (Keyboard);

9.  Мышь (Mouse);

10.  Дисковод CD-ROM (CD-RW, DVD);

11.  Дисковод гибких дисков (FDD – Floppy Disk Drive);

12.  Звуковая карта (Soundcard);

13.  Модем;

14.  Сетевая карта;

15.  Источник бесперебойного питания (UPS).

Другие устройства, как то: принтеры, сканеры, дигитайзеры, видео - и фотокамеры, джойстики и прочие, по отношению к компьютерной системе являются внешними.

В настоящее время при покупке ПК нам небходимо выбрать связку:

•  Процессор

•  Материнская плата

•  Память

Структура материнской платы современного ПК

Системная (systemboard, SB) или материнская (matheroard, MB) плата является главной составной частью ПК. Основное назначение системной платы — соединение всех узлов компьютера в одно устройство.

Конструктивно системная плата выполняется в виде многослойной текстолитовой печатной платы. Количество слоев может достигать 12, но чаше всего используют 8. Между каждым слоем располагаются печатные провод­ники, выполненные из металлической фольги, которые соединяют ножки микросхем, резисторов, конденсаторов и разъемов между собой.

Так как современные процессоры работают с внешними устройствами на частоте в несколько сотен мегагерц, то длина и расположение печатных проводников теперь рассчитывается по тем же принципам, что и для СВЧ-устройств, когда каждый лишний сантиметр проводника играет огромную роль. В этом можно убедиться, осмотрев системную плату — некоторые проводники, на - пример, проложены не по прямой линии, а с изгибами в виде пружины, что уравнивает их длину.

На СП непосредственно расположены

·  разъем для подключения микропроцессора;

·  набор системных микросхем (чипсет, chipset), обеспечивающих работу микропроцессора и других узлов машины;

·  микросхема постоянного запоминающего устройства, содержащего программы базовой системы ввода-вывода (Basic Input-Output System — BIOS);

·  микросхема энергонезависимой памяти (питается от автономного расположенного на MB аккумулятора), по типу используемых электронных элементов называемая CMOS;

·  микросхемы кэш-памяти 2-го уровня (если они отсутствуют на плате микропропроцессора) или кэш –память 3-го уравня.

·  разъмы для подключения модулей оперативной памяти

·  наборы микросхем и разъмы для системных, локальных и переферийных интерфейсов

·  микросхемы мультимедийных устройств и т. д.

На рис. показан в упрощенном виде принцип построения электроники системной платы. На рисунке, в центре, между процессором, модулями оперативной памяти и внешними устройствами расположен чипсет — набор микросхем, которые выполняют служебные функции по распределению сигналов между всеми блоками. При подаче напряжения питания чипсет вырабатывает определенную последовательность команд, которая активизи­рует процессор. Процессор, в свою очередь, по программе BIOS тести­рует и активизирует остальные устройства, установленные и подключенные к системной плате. Если старт компьютера прошел успешно, то микро­схемы чипсета связывают процессор, память и периферийные устройства в единое целое — вычислительное устройство, готовое выполнить команды пользователя или определенным образом реагировать на появление сигналов в интерфейсных линиях

Если посмотреть внимательно на блок-схему на рис. XX, а, то можно заме­тить, что поток информации от процессора к оперативной памяти и обратно проходит через электронику чипсета. Даже если в чипсете есть только бу­ферные цепи, то и они, увы, вносят небольшую задержку времени, пусть да­же в идеале и в один такт системной шины. Для современных компьютерных систем подобная задержка— это уже много, поэтому сначала корпорация AMD, а потом и Intel перенесли контроллер памяти на кристалл процессора (рис. 4.2, б). При таком принципе построения процессор работает с памятью непосредственно, и ликвидируются лишние звенья, что повышает общую производительность системы.

board-big

Cхематическое изображение чипсета материнской платы

Наиболее известными производителями материнских плат на российском рынке в настоящее время являются фирмы Asus, Gigabyte, MSI, Intel, Elitegroup, AsRock. Ранее большой известностью пользовались платы фирм Abit и Epox. На сегодня обе фирмы прекратили выпуск материнских плат. Из российских производителей материнских плат можно упомянуть только компанию Формоза, которая производила платы, используя компоненты фирм Lucky Star и Albatron. Из украинских — корпорацию «Квазар-Микро».[Важный параметр материнской платы - ее форм-фактор. Именно от него зависит:




Количество слотов расширения

Слотов оперативной памяти

Интегрированных контроллеров.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT; Mini-ATX; полноразмерная плата AT; LPX.

Современные: АТХ; microATX; Flex-АТХ; NLX; WTX, CEB.

Внедряемые: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX

Существуют материнские платы, не соответствующие никаким из существующих форм-факторов (см. таблицу). Обычно это обусловлено либо тем, что производимый компьютер узкоспециализирован, либо желанием производителя материнской платы самостоятельно производить и периферийные устройства к ней, либо невозможностью использования стандартных компонентов (так называемый «бренд», например Apple Computer, Commodore, Silicon Graphics, Hewlett Packard, Compaq чаще других игнорировали стандарты; кроме того в нынешнем виде распределённый рынок производства сформировался только к 1987 году, когда многие производители уже создали собственные платформы)

Как уже упоминалось выше, форм-фактор материнской платы задает не только ее геометрические размеры, но и количество слотов расширения. Например, один PCI Express и шесть PCI-слотов могут быть размещены только на платах формата АТХ или Extended ATX. На платах меньшего размера количество слотов будет другим (четыре у micro-ATX и три у flex-АТХ). Часто один-два PCI-слота заменяются одним или двумя слотами PCI Express.

Форм-фактор

Физические размеры

Спецификация, год

Примечание

XT

8,5 × 11" (216 × 279 мм)

IBM, 1983

архитектура IBM PC XT

AT

12 × 11"–13" (305 × 279–330 мм)

IBM, 1984

архитектура IBM PC AT (Desktop/Tower)

Baby-AT

8,5" × 10"–13" (216 × 254-330 мм)

IBM, 1990

архитектура IBM PC XT (форм-фактор считается недействительным с 1996 г.)

ATX

12" × 9,6" (305 × 244 мм)

Intel, 1995

для системных блоков типов MiniTower, FullTower

ATX Riser

Intel, 1999

для cистемных блоков типа Slim

eATX

12" × 13" (305 × 330 мм)

Mini-ATX

11,2" × 8,2" (284 × 208 мм)

для системных блоков типа Tower и компактных Desktop

microATX

9,6" × 9,6" (244 × 244 мм)

Intel, 1997

Имеет меньше слотов, чем ATX, также возможно использование меньшего PSU

LPX

9" × 11"–13" (229 × 279–330 мм)

Western Digital, 1987

для системных блоков типа Slim

Mini-LPX

8"–9" × 10"–11" (203–229 мм × 254–279 мм)

Western Digital, 1987

для системных блоков типа Slim

NLX

8"–9" × 10"-13,6" (203–229 мм × 254–345 мм)

Intel, 1997

предусмотрен AGP, лучшее охлаждение чем у LPX

FlexATX

9,6" × 7,5"-9.6" (244 × ?-244 мм)

Intel, 1999

разработан как замена для форм-фактора MicroATX

WTX

14" × 16,75" (355,6 × 425,4 мм)

1999

для высокопроизводительных рабочих станций и серверов среднего уровня

Mini-ITX

6,7" × 6,7" (170 × 170 мм)

VIA Technologies, 2003

допускаются только 100 Вт блоки питания

Nano-ITX

(120 × 120 мм)

VIA Technologies, 2004

BTX

12,8" × 10,5" (325 × 267 мм)

Intel, 2004

допускается до 7 слотов и 10 отверстий для монтажа платы

MicroBTX

10,4" × 10,5" (264 × 267 мм)

Intel, 2004

допускается до 4 слотов и 7 отверстий для монтажа платы

PicoBTX

8,0" × 10,5" (203 × 267 мм)

Intel, 2004

допускается 1 слот и 4 отверстия для монтажа платы

ETX и PC-104

используются для встраиваемых (embedded) систем

CEB

12" × 10,5" (305 × 267 мм)

2005

для высокопроизводительных рабочих станций и серверов среднего уровня

Pico-ITX

3,9" × 2,7" (100 х 72 мм)

VIA, 2007

используются в ультракомпактных встраиваемых системах


Форм-фактор AT и АТХ

Типичная системная плата формата ATX

В 1996 г. корпорация Intel предложила форм-фактор АТХ, который является серьезно модернизированным форм-фактором AT. Глубокой переработке под­верглась системная плата, на которой были перегруппированы все основные элементы. В частности, процессор передвинут в зону действия вентилятора бло­ка питания, что, как считалось, улучшит охлаждение процессора (оказалось, что это справедливо только для маломощных процессоров!). На системную плату штатно стали монтировать с десяток интерфейсных разъемов, которые ранее монтировались отдельно на корпусе компьютера.

Блок питания ATX, кроме стандартных для AT напряжений и сигналов, обеспечивает также напряжение 3.3 В и имеет возможность включения и отключения основного питания по сигналу с платы, которая имеет для этого программный интерфейс. Имеется также отдельная линия слаботочного питания 5 В, напряжение на которой поддерживается постоянно и используется в цепях управления основным питанием для отслеживания внешних сигналов запуска по сети, модему и т. п.




Для соединения блока питания с платой используется единый 20-контактный разъем ( см. рис ). В стандарте ATX оговорен также необязательный разъем, через который с блока питания на плату подается информация о частоте вращения вентилятора, а с платы в блок питания - сигнал управления вентилятором и контрольный уровень напряжения 3.3 В для более точной его стабилизации.

24-контактный разъем питания материнской платы ATX12V 2.x
(20-контактный не имеет последних четырёх: 11, 12, 23 и 24)

Цвет

Сигнал

Контакт

Контакт

Сигнал

Цвет

Оранжевый

+3.3 V

1

13

+3.3 V

Оранжевый

+3.3 V sense

Коричневый

Оранжевый

+3.3 V

2

14

−12 V

Синий

Чёрный

Земля

3

15

Земля

Чёрный

Красный

+5 V

4

16

Power on

Зелёный

Чёрный

Земля

5

17

Земля

Чёрный

Красный

+5 V

6

18

Земля

Чёрный

Чёрный

Земля

7

19

Земля

Чёрный

Серый

Power good

8

20

Не подключен

Фиолетовый

+5 V standby

9

21

+5 V

Красный

Жёлтый

+12 V

10

22

+5 V

Красный

Жёлтый

+12 V

11

23

+5 V

Красный

Orange

+3.3 V

12

24

Земля

Наружные интерфейсные разъемы располагаются в области верхнего правого угла платы и могут устанавливаться друг над другом. Для разъемов расширения отведена левая половина платы (до семи разъемов); за счет вынесения процессора на правую сторону ограничения на длину устанавливаемых плат отсутствуют. Разъемы для модулей памяти расположены посередине, а интерфейсные разъемы дисков - в правом нижнем углу, в непосредственной близости от самих дисков.


Форм-фактор или типоразмер системной платы определяет ее размеры, тип разъема питания, расположение элементов крепления (отверстий, клипсов), размещение разъемов различных интерфейсов и т. д. Требования к максимальным размерам системных плат приведены ниже.

Наименование Ширина, мм Глубина, мм

АТХ

Mini АТХ

Micro АТХ

Flex АТХ

АТ

Baby АТ

NLX

LPX

Mini LPX

Front Side Bus (FSB)

Front Side Bus (FSB) — шина, обеспечивающая соединение между x86-совместимым центральным процессором и внутренними устройствами.

Как правило, современный персональный компьютер на базе x86-совместимого микропроцессора устроен следующим образом: микропроцессор через FSB подключается к системному контроллеру, который обычно называют «северным мостом», (англ. Northbridge). Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема BIOSа, устройства с шиной PCI) подключаются к т. н. «южному мосту» (англ. Southbridge), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов называют набором системной логики, но чаще применяется калька с английского языка «чипсет» (англ. chipset).

Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.

Некоторые компьютеры имеют внешнюю кэш-память, подключенную через «заднюю» шину (англ. back side bus), которая быстрее, чем FSB, но работает только со специфичными устройствами.

Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.


Процессорная шина

Две составляющие чипсета для “старых” процессоров получили название “северный мост” (он же Host Bridge) и “южный мост” (PCI‑to‑ISA Bridge). Северный мост непосредственно соединен с процессором специальной шиной, которая называется системной (FSB – Front Side Bus). FSB имеет ширину 64 бит (или 8 байт). У Intel эта шина называется GTL+ (AGTL+), у AMD – EV6.

Частота шины FSB – это именно та частота, которая умножается на коэффициент умножения процессора и определяет его рабочую частоту. Так, номинальная частота FSB для процессоров Celeron  была– 66 МГц, для Pentium III была – 100 или 133 МГц, для процессоров AMD (Athlon, Duron)  была– 100, 133, 166 или 200 МГц (но поскольку спецификация EV6 предусматривает передачу данных по фронту и спаду синхроимпульса, то эффективная частота в этом случае получается 200, 266, 333 или 400 МГц). Таким образом, пропускная способность шины FSB EV6 была в два раза выше шин GTL+ и AGTL+. Это сокращает время простоя процессора, ожидающего освобождения шины, осуществляющей передачу данных на удвоенной частоте, для осуществления нового цикла чтение/записи. Кроме того, повышение скорости передачи данных через процессорную шину способствовало более эффективной работе подсистемы оперативной памяти. Начиная с процессора Pentium 4 внедрился новый стандарт шины FSB. Шина процессора при тактовой частоте 100, 133, 200,266,333 МГц осуществляет передачу данных с частотой 400, 533, 800 МГц (QPB (Quad Pumped Bus), передающую данные 4 раза за цикл. Quad-pumped – 4X). Такая организация передачи увеличивает пропускную способность шины до 8533 МБ/с в отличие от 1,06 Гбайт/с шины стандарта AGTL+ с рабочей частотой 133 МГц.




(FSB – QPB, или Quad-Pumped Bus, способна передавать четыре блока данных за такт и два адреса за такт! То есть за каждый такт синхронизации шины по ней может быть передана команда либо четыре порции данных (напомним, что шина FSB–QPB имеет ширину 64 бит, то есть за такт может быть передано до 4х64=256 бит, или 32 байт данных). Итого, скажем, для частоты FSB, равной 200 МГц, эффективная частота передачи адреса для выборки данных будет эквивалентна 400 МГц (2х200 МГц), а самих данных – 800 МГц (4х200 МГц)

Процессор

частота FSB

Тип FSB

Теоретическая пропускная способность

Pentium II

66 / 100 МГц

GTL+

533 / 800 МБ/с

Pentium III

100 / 133 МГц

AGTL+

800 / 1066 МБ/с

Pentium 4

100 / 133 / 200 МГц

QPB

3200 / 4266 / 6400 МБ/с [1]

Pentium M

100 / 133 МГц

QPB

3200 / 4266 МБ/с [1]

Pentium D

133 / 200 МГц

QPB

4266 / 6400 МБ/с [1]

Pentium 4 EE

200 / 266 МГц

QPB

6400 / 8533 МБ/с [1]

Intel Core

133 / 166 МГц

QPB

4266 / 5333 МБ/с [1]

Intel Core 2

200 / 266 / 333 / 400 МГц

QPB

6400 / 8533 / 10660 / 12800 МБ/с [1]

Xeon — ядро P6

100 / 133 МГц

GTL+

800 / 1066 МБ/с

Xeon — ядро NetBurst

100 / 133 / 166 / 200 / 266 / 333 МГц

QPB

3200 / 4266 / 5333 / 6400 / 8533 / 10660 МБ/с [1]

Xeon — ядро Penryn

266 / 333 / 400 МГц

QPB

8533 / 10660 / 12800 МБ/с [1]

Athlon

100 / 133 МГц

EV6

1600 / 2133 МБ/с [2]

Athlon XP

133 / 166 / 200 МГц

EV6

2133 / 2666 / 3200 МБ/с [2]

Почти все AMD K8

Athlon 64/FX/Opteron

800 / 1000 МГц

HyperTransport v1

6400 / 8000 МБ/с [2]

Новое поколение AMD K8 и все K10

Turion 64 X2/Phenom/Phenom II

1600 / 1800 / 2000 МГц

HyperTransport v3

12800 / 14400 / 16000 МБ/с [2]

PowerPC 970

900 / 1000 / 1250 МГц

7200 / 8000 / 10000 МБ/с

Direct Media Interface, сокр. DMI — последовательная шина разработанная Intel для подсоединения южного моста материнской платы (ICH) к северному мосту (MCH или GMCH). В материнских платах для процессоров с разъемом LGA 1156 (то есть для Core i3, Core i5 и некоторых серий Core i7[1] и Xeon) и со встроенным контроллером памяти, DMI используется для подсоединения чипсета (PCH) непосредственно к процессору[2]. (Процессоры серии Core i7 для LGA 1366 подсоединяется к чипсету через шину QPI[3].)

Первыми чипсетами с DMI было семейство Intel 915, выпущенное в 2004 году[4].

DMI является проприетарной технологией Intel. В 2009 году Intel отказалась лицензировать шину DMI фирме Nvidia. Поскольку поддержка DMI встроена в процессоры с ядром Nehalem для разъема LGA 1156 и используется для подсоединения к чипсету, Nvidia фактически потеряла право производить чипсеты для большей части новых процессоров Intel[

Intel QuickPath Interconnect, "QuickPath" (ранее Common System Interface, CSI) — стандарт на процессорную шину типа точка-точка для связи процессоров, разработанный фирмой Intel. Данный интерфейс создавался в ответ на разработанный ранее консорциумом во главе с фирмой AMD интерфейс HyperTransport.

Интерфейс QuickPath заменил применяющуюся ранее в процессорах Xeon, Itanium 2, Pentium 4, Core 2 шину Front Side Bus. Первые процессоры с интерфейсом QuickPath были выпущены на рынок в 2008 году; ими стали процессоры с архитектурой Nehalem.

Производительность интерфейса составляет от 4.8 до 6.4 миллиарда пересылок в секунду, т. е. от 24 до 32 гигабайт в секунду на каждое соединение.

Back side bus (BSB) — шина кэш-памяти второго уровня в процессорах с двойной независимой шиной (англ. DIB - Dual Independed Bus).

Для связи с контроллером памяти предназначена FSB (Front side bus), работающая в качестве магистрального канала между процессором и чипсетом.

Приведм пропускные способности различных интерфейсов передачи данных, применяемых в компьютерной технике. Для обозначения пропускной способности интерфейса иногда могут использоваться термины ёмкость канала или производительность.

Традиционно, пропускная способность «параллельных интерфейсов» (для передачи данных используется группа сигналов, число которых обычно кратно 8, называемых линиями данных и выделенного сигнала — тактового сигнала; при возникновении определённого состояния на линии тактового сигнала получатель узнаёт, что состояния линий данных установились и данные могут быть считаны) измеряется в байтах в секунду; в то время как пропускная способность «последовательных интерфейсов» (при реализации интерфейса не используются специальные тактовые сигналы) измеряется в битах в секунду. В данном документе для каждого интерфейса величина пропускной способности приводится как в байтах в секунду так и в битах в секунду, но наиболее употребительные единицы выделены жирным шрифтом.

Интерфейсы в списке сгруппированы по функциональному признаку и в рамках группы перечислены начиная от менее производительных к более производительным.

Для каждого интерфейса в списке приводится пиковая пропускная способность — теоретическая максимальная пропускная способность; в реальных условиях производительность интерфейса как правило окажется значительно ниже, нежели та, что приведена в таблице.




Максимальные скорости передачи информации через интерфейсы
персонального компьютера

Расчет максимальной пропускной способности системных шин на материнской плате ПК

Процессорная
хост-шина
(для fFSB = 66МГц)

66 МГц ´ 64 бит = 4224 Мбит/с

4224 Мбит/с : 8 = 528 Мбайт/с

ISA

8 МГц ´ 16 бит = 128 Мбит/с

128 Мбит/с : 2 цикла = 64 Мбит/с

64 Мбит/с : 8 = 8 Мбайт/с

PCI

33 МГц ´ 32 бит = 1056 Мбит/с

1056 Мбит/с : 8 = 132 Мбайт/с

AGP

66,6 МГц ´ 32 бит = 2131 Мбит/с

2131 Мбайт/с : 8 = 266 Мбайт/с

266 Мбайт/с ´ 2 блока ≈ 533 Мбайт/с (если AGP 2x)

266 Мбайт/с ´ 4 блока ≈ 1066 Мбайт/с (если AGP 4x)

266 Мбайт/с ´ 8 блоков ≈ 2133 Мбайт/с (если AGP 8x)


ISA-8 bit

Шина

ISA

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1984

Разрядность данных

8

Разрядность адреса

20

8 бит/8* *4.77 МГц=

=4.77 Мбайт/с

Такт. Частота, МГц

8

Макс. Скор.,Мбайт/с

4.77

Макс. кол-во устр-в

6

Кол-во сигналов

62


ISA-16 bit

Шина

ISA

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1984

Разрядность данных

16

Разрядность адреса

24

16 бит/8* *8 МГц=

=16 Мбайт/с

Такт. Частота, МГц

8

Макс. Скор.,Мбайт/с

16

Макс. кол-во устр-в

6

Кол-во сигналов

98


Шина EISA

Шина

EISA

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1989

Разрядность данных

32

Разрядность адреса

32

32 бит/8* 8 МГц=

=32 Мбайт/с

Такт. Частота, МГц

8

Макс. Скор.,Мбайт/с

33

Макс. кол-во устр-в

15

Кол-во сигналов

188

Шина MCA

Шина

MCA

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1987

Разрядность данных

32/64

Разрядность адреса

32

32 бит/8* 10 МГц=

=16 Мбайт/с

Такт. Частота, МГц

10

Макс. Скор.,Мбайт/с

20/40

Макс. кол-во устр-в

16

Кол-во сигналов

178

Шина VLB

Шина

VLB

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1987

Разрядность данных

32

Разрядность адреса

32

32 бит/8* 33 МГц=

=132 Мбайт/с

Такт. Частота, МГц

<33

Макс. Скор.,Мбайт/с

130

Макс. кол-во устр-в

2-3

Кол-во сигналов

112

Шина PCI

Шина

PCI

Расчёт Макс. Скор. ,Мбайт/с

Год выпуска

1992

Разрядность данных

32/64

Разрядность адреса

32

32 бит/8* 33 МГц=

=132 Мбайт/с ;

64 бит/8* 33 МГц=

=264 Мбайт/с ;

64 бит/8* 66МГц=528 Мбайт/с

Такт. Частота, МГц

33,66

Макс. Скор.,Мбайт/с

132/264,520

Макс. кол-во устр-в

10

Кол-во сигналов

124/188


История PCI

В 1991 году Intel предлагает базовую версию (1.0) проекта стандарта шины PCI (Peripheral Component Interconnect — Соединение Периферийных Компонент). PCI призвана заменить ISA (а позже и ее не очень удачную и дорогую серверную расширенную модификацию EISA). Кроме значительно возросшей пропускной способности, новую шину характеризует возможность динамической конфигурации выделяемых присоединенным устройствам ресурсов (прерываний).

В 1993 году PCI Special Interest Group (PCISIG, Специальная Группа Интересов PCI, http://www. / — организация, взявшая на себя заботу о разработке и принятии различных стандартов имеющих отношение к PCI) публикует обновленную 2.0 ревизию стандарта ставшую основой для широкой экспансии PCI (и различных ее модификаций) в индустрии информационных технологий. В деятельности PCISIG принимают участие многие известные компании, включая родоначальника PCI — корпорацию Intel, подарившую индустрии множество долгоиграющих, исторически успешных стандартов. Итак, базовая версия PCI (IEEE P1386.1):

Тактовая частота шины 33 МГц, используется синхронная передача данных;

Пиковая пропускная способность 133 МБ в секунду;

Параллельная шина данных шириною 32-бита;

Адресное пространство 32-бита (4 ГБ);

Сигнальный уровень 3.3 или 5 вольт.

Позже появляются следующие ключевые модификации шины:

PCI 2.2 — допускается 64-бит ширина шины и/или тактовая частота 66 МГц, т. е. пиковая пропускная способность до 533 МБ/сек.;

PCI-X, 64-бит версия PCI 2.2 с увеличенной до 133 МГц частотой (пиковая пропускная полоса 1066 МБ/сек.);

PCI-X 266 (PCI-X DDR), DDR версия PCI-X (эффективная частота 266 МГц, реальная 133 МГц с передачей по обоим фронтам тактового сигнала, пиковая пропускная полоса 2.1 ГБ/сек);

PCI-X 533 (PCI-X QDR), QDR версия PCI-X (эффективная частота 533 МГц, пиковая пропускная полоса 4.3 ГБ/сек.);

Mini PCI — PCI с разъемом в стиле SO-DIMM, применяется преимущественно для миниатюрных сетевых, модемных и прочих карточек в ноутбуках;

Compact PCI — стандарт на форм фактор (модули вставляются с торца в шкаф с общей шиной на задней плоскости) и разъем, предназначенные в первую очередь для промышленных компьютеров и других критических применений;

Accelerated Graphics Port (AGP) — высокоскоростная версия PCI оптимизированная для графических ускорителей. Отсутствует арбитраж шины (т. е. допустимо только одно устройство, за исключением последней, 3.0 версии стандарта AGP, где устройств и слотов может быть два). Передачи в сторону ускорителя оптимизированы, есть набор специальных дополнительных возможностей специфических для графики. Впервые данная шина появилась вместе с первыми системными наборами для процессора Pentium II. Существует три базовых версии протокола AGP, дополнительная спецификация на питание (AGP Pro) и 4 скорости передачи данных — от 1х (266 МБ/сек) до 8х (2ГБ/сек), в том числе допустим сигнальные уровни 1.5, 1.0 и 0.8 вольт.




Упомянем также CARDBUS — 32 разрядную версию шины для PCMCIA карт, с горячим подключением и некоторыми дополнительными возможностями, тем не менее, имеющую много общего с базовой версией PCI.

Как мы видим, основное развитие шины PCI идет по следующим направлениям:

Создание специализированных модификаций (AGP);

Создание специализированных форм факторов (Mini PCI, Compact PCI, CARDBUS);

Увеличение разрядности;

Увеличение тактовой частоты и применение DDR/QDR схем передачи данных.

Все это вполне логично, учитывая огромный срок жизни подобного всеобщего стандарта. Причем, пункты 1 и 2 не ставят своей целью сохранение совместимости с базовыми PCI картами, а вот пункты 3 и 4 выполняются за счет увеличения оригинального PCI разъема, и допускают установку обычных 32х разрядных PCI карт. Справедливости ради, отметим, что в ходе эволюции шины случались и сознательные потери совместимости со старыми картами, даже для базового варианта разъема PCI — например, в спецификации 2.3 исчезло упоминание о поддержке 5 вольт сигнального уровня и питающего напряжения. В результате, серверные платы снабженные этой модификацией шины могут пострадать при установке в них старых, пятивольтовых карт, хотя, с точки зрения геометрии разъема, эти карты к ним подходят.

Однако, как и любая другая технология (например, архитектуры процессорных ядер), шинная технология имеет свои разумные границы масштабирования, при приближении к которым увеличение пропускной полосы дается все большей и большей ценою. Возросшая тактовая частота требует более дорогостоящей разводки и накладывает существенные ограничения на длину сигнальных линий, увеличение разрядности или использование DDR решений также влечет за собою множество проблем, которые в итоге банально выливаются в рост стоимости. И если в серверном сегменте, решения подобные PCI-X 266/533 еще будут некоторое время экономически оправданными, то в потребительских PC мы их не увидели, и не увидим. Почему? Очевидно, что в идеале пропускная способность шин должна расти синхронно с ростом производительности процессора, при этом цена реализации должна не только сохраняться прежней, но и в идеале снижаться. На данный момент это возможно только при использовании новой шинной технологии. О них мы сегодня и поговорим:

Эпоха последовательных шин

Преимущества последовательных шин и интерфейсов:

1.  Выгодный перенос все большей части практической реализации шины на кремний, что облегчает отладку, повышает гибкость и сокращает время разработки;

2.  Перспектива органично использовать в будущем иные носители сигнала, например оптические;

3.  Экономия пространства (не бьющая по карману миниатюризация) и снижение сложности монтажа;

4.  Проще реализовывать горячие подключения и динамическую конфигурацию в любом смысле;

5.  Возможность выделять гарантированные и изохронные каналы;

6.  Переход от разделяемых шин с арбитражем и непредсказуемыми прерываниями, неудобными для надежных/критических систем к более предсказуемым соединениям точка-точка;

7.  Лучшая с точки зрения затрат и более гибкая с точки зрения топологии масштабируемость;

Семейство последовательных интерфейсов PCI Express

PCI Express Имя — PCI Express, на стадии проектирования была также известна как 3GIO ((Third Generation Input/Output Interconnection, 3GIO Ввод-вывод третьего поколения) или по кодовому имени рабочей группы и проекта «Arapahoe», причем оба названия (3GIO и PCI Express) являются зарегистрированными торговыми марками PCISIG;

·  Дата рождения — 22 июля 2002 года — опубликована базовая спецификация протокола и сигнального уровня, а также базовая спецификация на форм-фактор и энергопотребление карт и разъемы;

·  Фактически — совокупность независимых самостоятельных последовательных каналов передачи данных;

·  Сигнальный уровень 0.8 вольт. Каждый канал состоит из двух дифференциальных сигнальных пар (необходимо только 4 контакта):

Интерфейс PCI Express (первоначальное название - 3GIO5) использует концепцию PCI, однако физическая их реализация кардинально отличается. На физическом уровне PCI Express представляет собой не шину, а некое подобие сетевого взаимодействия на основе последовательного протокола. Высокое быстродействие PCI Express позволяет отказаться от других системных интерфейсов (AGP, PCI), что дает возможность также отказаться от деления системного чипсета на северный и южный мосты в пользу единого контроллера PCI Express.

Одна из концептуальных особенностей интерфейса PCI Express, позволяющая существенно повысить производительность системы, - использование топологии "звезда". В топологии "шина" (рис. 14.5а) устройствам приходится разделять пропускную способность PCI между собой. При топологии "звезда" (рис. 14.5б) каждое устройство монопольно использует канал, связывающий его с концентратором (switch) PCI Express, не деля ни с кем пропускную способность этого канала.

Сравнение топологий PCI и PCI Express


Рис. 14.5.  Сравнение топологий PCI и PCI Express

Канал (link), связывающий устройство с концентратором PCI Express, представляет собой совокупность дуплексных последовательных (однобитных) линий связи, называемых полосами (lane). Дуплексный характер полос также контрастирует с архитектурой PCI, в которой шина данных - полудуплексная (в один момент времени передача выполняется только в определенном направлении). На электрическом уровне каждая полоса соответствует двум парам проводников с дифференциальным кодированием сигналов. Одна пара используется для приема, другая - для передачи. PCI Express первого поколения декларирует скорость передачи одной полосы 2,5 Гбит/с в каждом направлении. В будущем планируется увеличить скорость до 5 и 10 Гбит/с.




Канал может состоять из нескольких полос: одной (x1 link), двух (x2 link), четырех (x4 link), восьми (x8 link), шестнадцати (x16 link) или тридцати двух (x32 link). Все устройства должны поддерживать работу с однополосным каналом. Аналогично, различают слоты: x1, x2, x4, x8, x16, x32. Однако слот может быть "шире", чем подведенный к нему канал, т. е. на слот x16 фактически может быть выведен канал x8 link и т. п. Карта PCI Express должна физически подходить и корректно работать в слоте, который по размерам не меньше разъема на карте, т. е. карта x4 будет работать в слотах x4, x8, x16, даже если реально к ним подведен однополосный канал. Процедура согласования канала PCI Express обеспечивает выбор максимального количества полос, поддерживаемого обеими сторонами.

При передаче данных по многополосным каналам используется принцип чередования или "разборки данных" (data stripping): каждый последующий байт передается по другой полосе. В случае канала x2 это означает, что все четные байты передаются по одной полосе, а нечетные - по другой.

Как и большинство других высокоскоростных последовательных протоколов, PCI Express использует схему кодирования данных, встраивающую тактирующий сигнал в закодированные данные, т. е. обеспечивающую самосинхронизацию. Применяемый в PCI Express алгоритм 8B / 10B (8 бит в 10 бит) обеспечивает разбиение длинных последовательностей нулей или единиц так, чтобы приемная сторона не потеряла границы битов. С учетом кодирования 8B/10B пропускную способность однополосного канала PCI Express можно оценить, как 2500 Мбит/с / 10 бит/байт = 250 мегабайт/с (238 Мбайт/с).

PCI Express обеспечивает передачу управляющих сообщений, в том числе прерываний, по тем же линиям данных. Последовательный протокол не предусматривает блокирование, поэтому легко обеспечивается латентность, сопоставимая с PCI, где имеются выделенные линии для прерываний.

Пожалуй, наиболее перспективно и представляет существенный интерес семейство последовательных интерфейсов PCI Express, информация о базовом протоколе кото­рого появилась в июле 2002 года. PCI Express использует совокупность независимых последовательных каналов передачи данных. Поскольку при передаче используется помехозащищенное кодирование, каждый байт представляется 10 битами. Пропускная способность одного канала 200 Мбайт/с. Лицензированы 1-, 2-, 4-, 8-, 16- и 32-каналь-ные версии (до 16 Гбайт/с). В режиме дуплексной передачи все эти цифры пропускной способности удваиваются.

Простейшая системная топология с интерфейсом PCI Express показана на рис.

Рис. ХХХ. Простейшая системная топология с интерфейсом PCI Express

Следует отметить, что использование интерфейсов PCI Express возможно только при подключении шин PCI Express х 16 и х 32 к северному порту системного чипсета, а шин PCI Express х 1 к южному. У интерфейсов PCI Express в каждой линии два канала: прямой и обратный для обеспечения дуплексной передачи. В каждом канале — два подканала для передачи прямого и инверсного кодов для контроля достоверности информации

Характеристики шин семейства PCI

Версия

Разрядность шины, бит

Рабочая частота, МГц

Скорость передачи, Мбайт/с*

PCI 1.0

32

33

132

PCI 2.1

32

66

266

PCI 2.2

64

133

532

PCI X 1.0

64

133

1066

PCI X DDR

64

133

2100

PCI X QDR

64

133

4200

PCI Express x 1

8

2500

266

PCI Express x2

8, 2 линии

2500

532

PCI Express x4

8,4 линии

2500

1066

PCI Express x8

8,8 линий

2500

2132

PCI Express x 16

8,16 линий

2500

4200

PCI Express x32

8, 32 линии

2500

8400

PCI Express 2.0 x 1

8

5000

500

С

Расчет пропускной способности шин ПК шина PCI-express в байтах

где 2,5 — пропускная способность одного lane(соединение типа точка-точка), Гбит/с;

0,8 — коэффициент, учитывающий использование

кода 8В/10В; о

1/8— коэффициент для перевода Гбит/с в ГБ/с.

·  Используется избыточное защищенное от помех кодирование — каждый байт при передаче представляется десятью битами;

·  Пропускная способность 2.5 Гигабита (250 МБ) в секунду для одного канала в каждом направлении одновременно (полный дуплекс), однако, следует учесть, что эффективная скорость передачи данных за вычетом избыточного кодирования составляет 2 Гигабита (200 МБ) ровно;

·  Стандартизированы 1, 2, 4, 8, 16 и 32 канальные варианты (до 6.4 эффективных Гигабайт в секунду соответственно, при передаче в одну сторону и вдвое больше при передаче в обоих направлениях). При передаче данных они передаются параллельно (но не синхронно) по всем доступным каналам:

·  Вся контрольная информация передается по тем же линиям что и данные, используется стек протоколов, из нескольких уровней, включая маршрутизацию данных:

·  Стандарт предусматривает и альтернативные носители сигнала, такие как оптические волноводы;

·  Возможность динамического подключения и конфигурации устройств;

·  Возможность распознавания и использования альтернативных (улучшенных) протоколов обмена.




PCI Express — ключевые отличия

Подробнее остановимся на ключевых отличиях PCI Express от PCI:

1.  Как уже неоднократно упоминалось — новая шина последовательна, а не параллельна. Основные преимущества — снижение стоимости, миниатюризация, лучшее масштабирование, более выгодные электрические и частотные параметры (нет необходимости синхронизировать все сигнальные линии);

2.  Спецификация разделена на целый стек протоколов, каждый уровень которого может быть усовершенствован, упрощен или заменен не сказываясь на остальных. Например — может быть использован иной носитель сигнала или может быть упразднена маршрутизация в случае выделенного канала только для одного устройства. Могут быть добавлены дополнительные контрольные возможности. Развитие такой шины будет происходить гораздо менее болезненно — увеличение пропускной способности не потребует изменять контрольный протокол и наоборот. Быстро и удобно разрабатывать адаптированные варианты специального назначения;

3.  В изначальной спецификации заложены возможности горячей замены карт;

4.  В изначальной спецификации заложены возможности создания виртуальных каналов, гарантирования пропускной полосы и времени отклика, сбора статистики QoS (Quality of Service — Качество Обслуживания);

5.  В изначальной спецификации заложены возможности контроля целостности передаваемых данных (CRC);

6.  В изначальной спецификации заложены возможности управления питанием.

Итак, более широкие диапазоны применимости, более удобное масштабирование и адаптация, богатый набор изначально заложенных возможностей. Все так хорошо, что просто не верится. Впрочем, в отношении этой шины, даже заядлые пессимисты высказываются скорее положительно, чем отрицательно. И это не удивительно — кандидат на десятилетний трон общего стандарта для большого числа различных применений (начиная с мобильных и встраиваемых и заканчивая серверами «Энтерпрайз» класса или критическими применениями) просто обязан выглядеть безупречным со всех сторон, хотя бы на бумаге :-). Как оно будет в деле — мы скоро увидим сами.

Самый простой вариант перехода на PCI-Express для стандартных по архитектуре настольных систем выглядит так:

Однако в будущем логично ожидать появление некоего разветвителя PCI Express. Тогда вполне оправданным станет и объединение северного и южного мостов. Приведем примеры возможных системных топологий. Классический PC с двумя мостами:

Более обобщенная (серверная) архитектура с одним мостом:

Мощный сервер:

Производительный сетевой раутер:

Высокоскоростные шины HyperTransport

В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.

Различия

Различия реализации классической архитектуры и АМD-K8

Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора4

В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).

HyperTransport

Эмблема

Эмблема HyperTransport Technology Consortium

HyperTransport – это прежде всего технология, управлением спецификациями и продвижением которой занимается HyperTransport Technology Consortium, куда входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, Transmeta и ещё более 140 малых и больших компаний.

Основные особенности и возможности, предоставляемые технологией HyperTransport

Технология HyperTransport (ранее известная как Lightning Data Transport) – это последовательная (пакетная) связь, построенная по схеме peer-to-peer (точка-точка), обеспечивающая высокую скорость при низкой латентности (low-latency responses). HyperTransport имеет оригинальную топологию на основе линков, тоннелей, цепей (цепь – последовательное объединение нескольких туннелей) и мостов (мост выполняет маршрутизацию пакетов между отдельными цепями), что позволяет этой архитектуре легко масштабироваться. Иными словами, HyperTransport призвана упростить внутрисистемные сообщения (передачи) посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport  характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины6, допуская ширину от 2 до 32 бит в каждом направлении, использует Double Data Rate, или DDR (данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.




Топология шины HyperTransport

Топология шины HyperTransport

На данный момент консорциумом HyperTransport разработана уже третья версия спецификации, согласно которой шина HyperTransport может работать на частотах до 2,6 ГГц (сравните с шиной PCI и её 33 или 66 МГц). Это позволяет передавать до 5200 миллионов пакетов в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

Полноразмерная (32-битная) полноскоростная (2,6 ГГц) шина способна обеспечить пропускную способность до 20800 МБ/с (2*(32/8)*2600) в каждую сторону, являясь на сегодняшний день самой быстрой шиной среди себе подобных.

Самые известные решения c использованием HyperTransport:

    шина, созданная по технологии HyperTransport, является основной шиной, используемой в процессорах восьмого поколения компании AMD – Athlon 64 и Opteron, а также внутри поддерживающих их устройств: концентратора ввода-вывода (I/O hub) AMD-8111, AMD-8131 PCI-X tunnel и AMD-8151 AGP 3.0 graphics tunnel SiPackets предлагает мост между HyperTransport и PCI (HyperTransport-to-PCI bridge)7 соединение между северным и южным мостами в чипсетах NVIDIA nForce (nForce-nForce 6) платформенная архитектура обработки данных NVIDIA (NVIDIA nForce Platform Processing Architecture), включающая встроенный графический процессор NVIDIA (NVIDIA nForce Integrated Graphics Processor (IGP) и процессор передачи данных NVIDIA (NVIDIA nForce Media and Communications Processor (MCP) соединение между мостами в чипсете ATI Radeon® Xpress 200 для процессоров AMD консольный чипсет игровой приставки Xbox фирмы Microsoft (Microsoft Xbox) системный контроллер ServerWorks HT-2000 HyperTransport™ SystemI/O™ Controller компьютеры фирмы Apple с процессором PowerPC G5

Использование
Увеличить

Системная (systemboard, SB) или материнская (matheroard, MB) плата является главной составной частью ПК. Основное назначение системной платы — соединение всех узлов компьютера в одно устройство.

Чипсет (chipset)

История

Первые чипсеты в современном понимании этого термина появились в середине 1980-х. Первопроходцами стали разработчики компьютеров серии Amiga с чипсетом OCS (позже его сменил ECS и AGA). Немногим позже компания Chips & Technologies предложила чипсет CS8220 (основной чип 82C206) для IBM PC/AT-совместимых систем. Примерно тогда же появились компьютеры серии Atari ST, так же созданные с использованием чипсета.

На развитие отечественной вычислительной техники, при существующих самобытных школах (Глушкова, Лебедева, Петрова, Ершова, Абрамова, Бруснецова, Каляева, Шура-Бура и др), существенное влияние оказали успешные разработки зарубежной микроэлектроники, в первую очередь американской. Специфика использования вычислительной техники в СССР и её разработки сыграли свою роль и в разработки отечественных «чипсетов» — ими стали так называемые «наборы микросхем» и «микропроцессорные комплекты». Учитывая состояние развития технологий на момент распада СССР, и последующие события в стране, в настоящее время в России существует заметный перевес теоретических разработок над практическими.

Чипсеты современных компьютеров

Чаще всего чипсет современных материнских плат компьютеров состоит из двух основных микросхем (иногда объединяемых в один чип, т. н. системный контроллер-концентратор (англ. System Controller Hub, SCH):

контроллер-концентратор памяти (англ. Memory Controller Hub, MCH[1][2]) или северный мост (англ. northbridge) — обеспечивает взаимодействие ЦП с памятью и c видеокартой, использующей шину PCI Express (а в прошлом, шину AGP). Соединяется с ЦП высокоскоростной шиной (FSB, HyperTransport или QPI). В современных ЦП (например Opteron, Itanium, Nehalem, UltraSPARC T1) контроллер памяти может быть интегрирован непосредственно в ЦП. В MCH некоторых чипсетах может интегрироваться графический процессор[3];

контроллер-концентратор ввода-вывода (англ. I/O Controller Hub, ICH[4]) или южный мост (англ. southbridge) — обеспечивает взаимодействие между ЦП и жестким диском, картами PCI, низкоскоростными интерфейсами PCI Express, интерфейсами IDE, SATA, USB и пр.

Иногда в состав чипсета включают микросхему Super I/O, которая подключается к южному мосту по шине Low Pin Count и отвечает за низкоскоростные порты: RS232, LPT, PS/2.

Существуют и чипсеты, заметно отличающиеся от традиционной схемы. Например, у процессоров для разъёма LGA 1156 функциональность северного моста (соединение с видеокартой и памятью) полностью встроена в сам процессор, и следовательно, чипсет для LGA 1156 состоит из одного южного моста, соединенного с процессором через шину DMI[5].

Создание полноценной вычислительной системы для персонального и домашнего компьютера на базе, состоящих из столь малого количества микросхем (чипсет и микропроцессор) является следствием развития техпроцессов микроэлектроники развивающихся по закону Мура (см. историю вычислительной техники).

Чипсеты для современных x86-процессоров

В создании чипсетов, обеспечивающих поддержку новых процессоров, в первую очередь заинтересованны фирмы-производители процессоров. Исходя из этого, ведущими фирмами (Intel и AMD) выпускаются пробные наборы, специально для производителей материнских плат, так называемые англ. referance-чипсеты. После обкатки на таких чипсетах, выпускаются новые серии материнских плат, и по мере продвижения на рынок лицензии (а учитывая глобализацию мировых производителей, кросс-лицензии) выдаются разным фирмам-производителям и, иногда, субподрядчикам производителей материнских плат.




Список основных производителей чипсетов для архитектуры x86:

Intel: (см. Список чипсетов Intel)

NVidia: (см. Список чипсетов NVidia )

ATI/AMD: (см. Список чипсетов ATI, после перекупки в 2006 году ATi вошла в состав Advanced Micro Devices; также см. Список чипсетов AMD)

Via: (см. Список чипсетов Via)

SiS: (см. Чипсеты SiS)

Слово «чипсет» (chipset) в буквальном переводе означает «набор микросхем». Чипсет, который также называют набором системной логики, — это одна или чаще две микросхемы (чипы), предназначенные для организации взаимодействия меж­ду процессором, памятью, портами ввода-вывода и остальными компонентами компьютера. На заре развития компьютерной техники для организации взаимо­действия между отдельными элементами ПК использовались десятки отдельных микросхем, что, конечно же, было крайне неудобно. И только с появлением про­цессора i486 отдельные микросхемы стали объединять в одну-две большие микро­схемы, которые и получили название чипсета ( см. рис. )

С появлением шины PCI отдельные микросхемы чипсета стали называть мостами.

Для двух базовых микросхем современного чипсета, чисто условно, были придуманы названия South Bridge (южный мост) и North Bridge (северный мост), которые произошли от местоположения микросхем на блок-схемах: верх— север, низ— юг. Самое любопытное, такие названия прижились и стали широко использоваться не только специалистами, но и пользователями.

С точки зрения специализации, на северный мост ложатся функции обмена между процессором и скоростными устройствами, например, памятью и шиной PCI Express или AGP. Южный мост предназначен для работы с низкоскорост­ными интерфейсами. Для обмена информацией между северным и южным мостом в современных компьютерах используются различные типы скорост­ных шин, которые у каждого разработчика чипсетов разные, например, для чипсетов VIA — это V-Link, SiS — MuTIOL (Multi Threaded I/O Link). Ранее связь между мостами осуществлялась через шину PCI, но скорость передачи данных через нее просто недостаточна для современных технологий.

В некоторых случаях производители объединяют северный и южный мосты в одну микросхему. Если чипсет — это всего одна микросхема, то такое решение называют одночиповым, а если две — двухмостовой схемой.

Северный мост чипсета традиционно содержит контроллер памяти (за исключе­нием чипсетов для процессоров с архитектурой AMD 64, где контроллер памяти размещен не в системной логике, а непосредственно на кристалле процессора), контроллер графической шины (AGP или PCI Express х16), интерфейс взаимо­действия с южным мостом и интерфейс взаимодействия с процессором. В некото­рых случаях северный мост чипсета может содержать дополнительные линии PCI Express xl для организации взаимодействия с картами расширения, имеющи­ми соответствующий интерфейс.

На южный мост чипсета возлагается функция организации взаимодействия с устройствами ввода-вывода. Южный мост содержит контроллеры жестких дисков (SATA и/или РАТА), USB-контроллер, сетевой контроллер (только МАС-уровень), контроллер шин PCI и PCI Express, контроллер прерывания и DMA-контроллер. Кроме того, в южный мост обычно встраивается звуковой контроллер (в этом случае еще необходима внешняя к чипсету микросхема коде­ка). Также южный мост соединяется еще с двумя важными микросхемами на ма­теринской плате: микросхемой ROM-памяти BIOS и микросхемой Super I/O, от­вечающей за последовательные и параллельные порты и дисковод.

На рис. 4.2, а показан в упрощенном виде традиционный принцип построе­ния электроники системной платы, причем этот вариант просуществовал бо­лее 30 лет и только сейчас начал модернизироваться. На рисунке, в центре, между процессором, модулями оперативной памяти и внешними устройства­ми расположен чипсет (chipset)— набор микросхем, которые выполняют служебные функции по распределению сигналов между всеми блоками.

При подаче напряжения питания чипсет вырабатывает определенную после­довательность команд, которая активизирует процессор. Процессор, в свою очередь, по программе BIOS тестирует и активизирует остальные устройства, установленные и подключенные к системной плате. Если старт компьютера прошел успешно, то микросхемы чипсета связывают процессор, память и пе­риферийные устройства в единое целое— вычислительное устройство, гото­вое выполнить команды пользователя или определенным образом реагиро­вать на появление сигналов в интерфейсных линиях.

Рис. 4. Принцип работы системной платы: а — традиционная схема; б — контроллер памяти расположен на кристалле процессора

Если посмотреть внимательно на блок-схему на рис. 4.2, а, то можно заме­тить, что поток информации от процессора к оперативной памяти и обратно проходит через электронику чипсета. Даже если в чипсете есть только бу­ферные цепи, то и они, увы, вносят небольшую задержку времени, пусть да­же в идеале и в один такт системной шины. Для современных компьютерных систем подобная задержка— это уже много, поэтому сначала корпорация AMD, а потом и Intel перенесли контроллер памяти на кристалл процессора (рис. 4.2, б). При таком принципе построения процессор работает с памятью непосредственно, и ликвидируются лишние звенья, что повышает общую производительность системы.




Для соединения северного и южного мостов друг с другом используется специаль­ная выделенная шина, причем разные производители используют для этого разные шины (с различной пропускной способностью):

·  Intel: DMI (Direct Media Interface);

·  AMD (унаследовала от ATI): HyperTransport, PCI Express;

·  NVIDIA: HyperTransport;

·  SiS (Silicon Integrated Systems): MuTIOL;

·  VIA:V-Link.

Как правило, название чипсета совпадает с названием северного моста, хотя правильнее указывать именно совокупность северного и южного мостов. Дело в том, что во многих случаях один и тот же северный мост чипсета может сочетаться с различными вариантами южных мостов.

Кроме вариантов построения системной платы, приведенных на рис. 4.2, су­ществуют и другие, которые зависят от архитектуры процессора. Например, в последнее время становится популярным перенос интерфейса видеокарты (для PCI-E) с чипсета на цепи, расположенные на кристалле процессора, что ускоряет работу графической подсистемы. В частности, допустимо все кон­тролеры внешних устройств смонтировать на кристалле процессора, заметим, что подобная схема применяется еще со времен процессоров Intel 80186. но в настольных компьютерах не прижилась.

Чипсет является основой любой материнской платы. Фактически функциональ­ность материнской платы и ее производительность на 90 % определяются именно чипсетом. От него зависят поддерживаемый тип процессора, тип памяти, а также функциональные возможности по подключению периферийных устройств

На рис. 4.11 приведена блок-схема третьего поколения чипсетов Intel G35, предназначенного для новых процессоров Intel Core 2 Duo. Северный мост — это микросхема G35 GMCH (МСН) (рис.4.12), а южный мост— это ICH8R (ICH). Как видно, к северному мосту подключаются наиболее производи­тельные блоки: процессор, память и видеокарта, а к южному — вся остальная периферия. Связь между мостами осуществляется со скоростью 2 Гбайт/с. Обратите внимание, что производителям системных плат предлагается выбор между одним слотом PCI Express х!6 или двумя PCI Express х8.

Рис. 4.11 Блок-схема третьего поколения чипсетов Intel G35

Разработка новых процессоров Intel Core i7 вызвала необходимость выпуска новых типов чипсетов для обеспечения их работы. На рис. 4.14 показана блок-схема чипсета Х58. Из всех новинок, внедренных корпорацией Intel, отметим только то, что модули памяти теперь непосредственно управляются процессо­ром, минуя посредника в виде северного моста. Вместо шины FSB теперь ис­пользуется интерфейс QPI, похожий на технологию HyperTransport у процессо­ров AMD. По остальным особенностям чипсета, следует внимательно сравнить блок-схемы на рис. 4.и 4.14. Следует отметить, что проведена лишь модернизация узлов, правда, без внесения революционных изменений.

Рис. 4.14. Блок-схема чипсета Intel Х58

Примечание

В новых чипсетах, которые предназначены для процессоров Intel Core i7/i5, оставлена всего одна микросхема, т. е. деление чипсета на южный и северный мост уходит в прошлое.

Чипсеты для нетбуков

Для поддержки процессоров линейки Atom корпорация Intel на практике использовала старую разработку Intel 945G Express, которая прошла обкатку на процессорах Pentium 4 и Core 2 Duo. Следует отметить, что для удешевления конечной продукции в нетбуках на базе процессоров Atom используется только аналоговый видеовыход и одноканальная па­мять, но. возможно, это только временно.

Для нетбуков на базе процессоров VIA Nano используются чипсеты разра­ботки корпорации VIA.

Производители чипсетов

Если процессоры линейки д:8б делают три-четыре производителя (считаем только тех. кто имеет достаточную долю на рынке), то чипсетами для этих процессоров занимаются чуть больше фирм, правда, не так мною, как в дру­гих областях микроэлектроники. И это связано с очень сложными проблема­ми при разработке высокопроизводительных микросхем, мало уступающих по сложности самим процессорам. Кроме того, приходится успевать за лиде­рами Intel и AMD, которые каждый год модернизируют свои процессоры. Сегодня реально в России можно встретить чипсеты всею лишь 4—5 фирм. Но, фактически, рынок чипсетов для процессоров «86 держат фирмы Intel. NVIDIA. VIA и AMD.

Корпорация Intel традиционно разрабатывает чипсеты для всей номенклату­ры своих процессоров; вводит в схемотехнику потомков IBM PC новые идеи и технологии. Но очень часто чипсеты сторонних производителей оказыва­ются более привлекательными для пользователей по тем или иным парамет­рам. Правда, в последнее время скорость выпуска новых процессоров стала настолько стремительна, что сторонние производители просто не успевают предлагать оригинальные идеи.

Корпорация AMD до середины 2006 г. выпускам ограниченное количество чипсетов для своих процессоров. В 2006 г. корпорация AMI) приобрела зна­менитого канадского производителя чипсетов для видеокарт — корпорацию ATI. получив в наследство чипсеты с фирменной технологией CrossFirc. В настоящее время корпорация AMD предлагает чипсеты как для своих про­цессоров, так и для конкурирующей платформы Intel.




Корпорация NVIDIA, знаменитая своими чипсетами для видеокарт, кроме того, выпускает чипсеты для системных плат. Оригинальные технологии, особенно графические, позволяют ей быть очень серьезным игроком на рын­ке. Например, чипсеты для процессоров линейки Pentium 4 были наиболее предпочтительны для многих пользователей.

Корпорация VIA разрабатывает и производит чипсеты не только для своих процессоров, но н для процессоров производства корпораций Intel и AMD. Часто се идеи в "чипсстостросннн" более интересны, чем у конкурентов.

Компания Silicon Integrated Systems Corporation — SiS — выпускает чипсеты и системные платы на их основе. Во времена господства сокста 7 системные платы SiS в России пользовались огромной популярностью, но сейчас ее продукция встречается очень редко.

Основными игроками на рынке чипсетов стоит считать

·  Intel,

·  AMD (ATI)

·  NVIDIA.

·  VIA

·  SIS

При изучении возможностей чипсетов пользователям следует обратить вни­мание, что если ранее разработка нового чипсета знаменовалась значитель­ным увеличением производительности компьютера и появлением новых функций, то в настоящее время разработчики исповедуют идеологию "ползу­чей" модернизации, когда следующий тип чипсета мало отличается от пред­шественника. Иначе говоря, в новом чипсете совершенствуют какую-то одну функцию или добавляют поддержку того или иного стандарта, например, ра­боту с той или иной памятью. Кроме того, имеет место разработка в рамках одного типа чипсета целого набора микросхем (несколько вариантов южного и северного мостов), которые производители системных плат могут произ­вольно комбинировать. В частности, в качестве южного моста могут приме­няться микросхемы, разработанные для предыдущего типа чипсета.

•  VIA Technologies – торговая марка VIA;

•  Silicon Integrated System – торговая марка SiS;

•  Acer Laboratories – торговая марка Ali;

•  AMD -ATI

•  nVidia – набор nForce)

Известны такие чипсеты

440BX, 440GX, 440ZX

Чипсеты серии

700,800 и 900

Intel Ххх

Распространены также удачные чипсеты фирм

•  VIA Technologies – торговая марка VIA;

•  Silicon Integrated System – торговая марка SiS;

•  Acer Laboratories – торговая марка Ali;

•  AMD -ATI

•  nVidia – набор nForce)

Смысл префиксов в обозначениях современных чипсетов от Intel:

•  Х – топовый чипсет

•  Р – чипсет среднего уровня (“Perfomance”)

•  G – чипсет с интегриррованным графическим ядром

•  Q – аналогично, только с отключёнными игровыми возможностями

•  *М – предназначен для мобильных платформ

Intel 3x (Bearlake)

Семейство состоит из следующих чипсетов:

X38, P35, G33, G31, G35, Q35, Q33

Нововведения чипсетов:

•  платы на Intel 3x работают и с памятью типа DDR3

•  реализован хост-контроллер второй версии стандарта PCI Express

Современные чипсеты от Intel ()

Intel® X58 Intel® G45

Intel® P43|45 Intel® Q43

Intel® P55 Intel® Q45

Intel® H55 Intel® Q57

Intel® H57 Intel® B43

Intel® G41 Intel® NM10

Intel® G43 Intel® 945GSE

Следующим шагом (2011) бует выпуск чипсетов Х6 с архитектурой Cougar Point. В них уже будет DMI II (4 ГБ/с) и не только SATA II, но и SATA III (6 ГБ/с)



Подпишитесь на рассылку:

Проекты по теме:

Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.