Глава 6. Непрерывные случайные величины

Глава 6. Непрерывные случайные величины.

§ 1. Плотность и функция распределения непрерывной случайной величины.

Множество значений непрерывной случайной величины несчетно и обычно представляет собой некоторый промежуток конечный или бесконечный.

Случайная величина x(w),заданная в вероятностном пространстве {W, S,P}, называется непрерывной (абсолютно непрерывной) W, если существует неотрицательная функция такая, что при любых х функцию распределения Fx(x) можно представить в виде интеграла

.

Функция называется функцией плотности распределения вероятностей.

Из определения вытекают свойства функции плотности распределения :

1.  Плотность распределения неотрицательна: .

2.  Интеграл по всей числовой прямой от плотности распределения вероятностей равен единице:

3.  В точках непрерывности плотность распределения равна производной функции распределения: .

4. Плотность распределения определяет закон распределения случайной величины, т. к. определяет вероятность попадания случайной величины на интервал :

.

5.Вероятность того, что непрерывная случайная величина примет конкретное значение равна нулю: . Поэтому справедливы следующие равенства:

.

График функции плотности распределения называется кривой распределения, и площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Тогда геометрически значение функции распределения Fx(x) в точке х0 есть площадь, ограниченная кривой распределения и осью абсцисс и лежащая левее точки х0.

Рис.6.1.

Задача 1. Функция плотности непрерывной случайной величины имеет вид:

Определить константу C, построить функцию распределения Fx(x) и вычислить вероятность .

Решение. Константа C находится из условия Имеем:

откуда C=3/8.

Чтобы построить функцию распределения Fx(x), отметим, что интервал [0,2] делит область значений аргумента x (числовую ось) на три части: Рассмотрим каждый из этих интервалов. В первом случае (когда x<0) вероятность события {x<x} вычисляется так:

так как плотность x на полуоси равна нулю. Во втором случае

Наконец, в последнем случае, когда x>2,

так как плотность обращается в нуль на полуоси . Итак, получена функция распределения

Вероятность вычислим по формуле . Таким образом,

§ 2. Числовые характеристики непрерывной случайной величины

Математическое ожидание для непрерывно распределенных случайных величин определяется по формуле При этом интеграл, стоящий справа, должен абсолютно сходиться. Пусть x имеет плотность р(х) и j(х) - некоторая функция. Математическое ожидание величины j(x) можно вычислить по формуле

,

если интеграл, стоящий справа, абсолютно сходится.

Дисперсия x может быть вычислена по формуле , а также, как и в дискретном случае, по формуле , где .

Все свойства математического ожидания и дисперсии, приведенные в главе 5 для дискретных случайных величин, справедливы и для непрерывных случайных величин.

Задача 2. Для случайной величины x из задачи 1 вычислить математическое ожидание и дисперсию.

Решение.

Далее,

и значит,

§ 3. Примеры непрерывных случайных величин

Равномерное распределение. Непрерывная случайная величина x имеет равномерное распределение на отрезке [a, b], если плотность распределения рx(x) сохраняет постоянное значение на этом промежутке:

График плотности равномерного распределения см. на рис. .

Рис.6.2. Функция распределения и плотность распределения. равномерного закона

Функция распределения Fx(x) равномерно распределенной случайной величины равна

Fx(x)=

Математическое ожидание и дисперсия ; .

Показательное (экспоненециальное) распределение. Непрерывная случайная величина x, принимающая неотрицательные значения, имеет показательное распределение с параметром l>0, если плотность распределения вероятностей случайной величины равна

рx(x)=

Рис. 6.3. Функция распределения и плотность распределения показательного закона.

Функция распределения показательного распределения имеет вид

Fx(x)=

а математическое ожидание и дисперсия равны Мx=, Dx=.

Нормальное распределение (распределение Гаусса). Непрерывная случайная величина называется распределенной по нормальному закону с параметрами и , если ее плотность распределения равна

.

Через обозначается множество всех случайных величин, распределенных по нормальному закону с параметрами параметрами и .

Функция распределения нормально распределенной случайной величины равна

.

Рис. 6.4. Функция распределения и плотность распределения нормального закона

Параметры нормального распределения суть математическое ожидание и дисперсия

В частном случае, когда и нормальное распределение называется стандартным, и класс таких распределений обозначается .

В этом случае плотность стандартного распределения равна

,

а функция распределения

Такой интеграл не вычислим аналитически (не берется в «квадратурах»), и потому для функции составлены таблицы. Функция связана с введенной в главе 4 функцией Лапласа

,

следующим соотношением . В случае же произвольных значений параметров и функция распределения случайной величины связана с функцией Лапласа с помощью соотношения:

.

Поэтому вероятность попадания нормально распределенной случайной величины на интервал можно вычислять по формуле

.

Неотрицательная случайная величина x называется логарифмически нормально распределенной, если ее логарифм h=lnx подчинен нормальному закону. Математическое ожидание и дисперсия логарифмически нормально распределенной случайной величины равны Мx= и Dx=.

Задача 3. Пусть задана случайная величина . Вычислить вероятность .

Решение. Здесь и . Согласно указанной выше формуле

Распределение Лапласа задается функцией fx(x)=e-lïxï, -¥<х<¥.

(двусторонняя показательная плотность).

Функция плотности распределения симметрична относительно нуля и Мx=Хmed=Xmod=0 и асимметрия - bx=0. Дисперсия в два раза больше дисперсии случайной величины, распределенной по показательному закону Dx= = и эксцесс равен gx=3.

Рис.6.5. Функция плотности распределения Лапласа.

Случайная величина x распределена по закону Вейбулла, если она имеет функцию плотности распределения, равную

Функция распределения в этом случае определяется следующим выражением :

Распределению Вейбулла подчиняются времена безотказной работы многих технических устройств. В задачах данного профиля важной характеристикой является интенсивность отказа (коэффициент смертности) l(t) исследуемых элементов возраста t, определяемый соотношением l(t)=. Если a=1, то распределение Вейбулла превращается в экспоненциальное распределение, а если a=2 - в так называемое распределение Рэлея.

Математическое ожидание распределения Вейбулла: - и дисперсия - , где Г(а) - функция Эйлера. .

В различных задачах прикладной статистики часто встречаются так называемые «усеченные» распределения. Например, налоговые органы интересуются распределением доходов тех лиц, годовой доход которых превосходит некоторый порог с0, установленный законами о налогообложении. Эти распределения оказываются приближенно совпадающими с распределением Парето. Распределение Парето задается функциями

Fx(x)=P(x<x)=1–()a; ,

где a>0, а х>с0. Основные числовые характеристики этого распределения существуют не всегда, а лишь при соблюдении определенных требований к значению параметра a: математическое ожидание - Мx= при a>1, дисперсия - Dx= существует при a>2;

§ 4. Функции от случайных величин

Пусть задана плотность случайной величины x и монотонная дифференцируемая функция . Тогда плотность распределения случайной величины равна

Здесь – функция, обратная к функции .

Задача 4. Случайная величина равномерно распределена на отрезке [0,2]. Найти плотность случайной величины .

Решение. Из условия задачи следует, что

Далее, функция является монотонной и дифференцируемой функцией на отрезке [0,2] и имеет обратную функцию , производная которой равна Следовательно,

.

Значит,

§ 5. Пара непрерывных случайных величин

Пусть заданы две непрерывные случайные величины x и h. Тогда пара (x, h) определяет «случайную» точку на плоскости. Пару (x, h) называют случайным вектором или двумерной случайной величиной.

Совместной функцией распределения случайных величин x и h и называется функция F(x, y)=P, т. е. вероятность попадания случайного вектора (x, h) в бесконечный угол на плоскости с вершиной в точке (x, y) лежащий ниже и левее этой точки (см. рис. ), т. е. функция . Совместной плотностью распределения вероятностей случайных величин x и h называется функция такая, что .

Рис. 6.6.

Смысл такого определения совместной плотности распределения заключается в следующем. Вероятность того, что «случайная точка» (x, h) попадет в область на плоскости, вычисляется как объем трехмерной фигуры – «криволинейного» цилиндра, ограниченного поверхностью и плоскостью z=0, и основанием которого является множество B. Аналитически этот факт записывается с помощью двойного интеграла:

Простейшим примером совместного распределения двух случайных величин является двумерное равномерное распределение на множестве A. Пусть задано ограниченное множество М с площадью Оно определяется как распределение пары (x, h), задаваемое с помощью следующей совместной плотности:

Задача 5. Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.

Решение. Площадь указанного треугольника равна (см. рис. № ?). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна

Событие соответствует множеству на плоскости, т. е. полуплоскости. Тогда вероятность

На полуплоскости B совместная плотность равна нулю вне множества и ½ внутри множества . Таким образом, полуплоскость B разбивается на два множества и . Следовательно, двойной интеграл по множеству B представляется в виде суммы интегралов по множествам и , причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому

.

Если задана совместная плотность распределения для пары (x, h), то плотности и составляющих x и h называются частными плотностями и вычисляются по формулам:

Случайные величины x, h называются независимыми, если при любых х и у независимыми являются события {x<х} и {h<у}, т. е.

Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что

.

Задача 6. В условиях предыдущей задачи определить, независимы ли составляющие случайного вектора x и h?

Решение. Вычислим частные плотности и . Имеем:

Аналогично,

Очевидно, что в нашем случае , и потому случайные величины x и h зависимы.

Числовые характеристики для случайного вектора (x, h) можно вычислять с помощью следующей общей формулы. Пусть — совместная плотность величин x и h, а j(х, у) — функция двух аргументов, тогда

.

В частности,

Задача 7. В условиях предыдущей задачи вычислить .

Решение. Согласно указанной выше формуле имеем:

.

Представив треугольник в виде

,

двойной интеграл можно вычислить как повторный:

§ 5. Плотность суммы двух непрерывных случайных величин

Пусть x и h — независимые случайные величины с плотностями и . Плотность случайной величины x + h вычисляется по формуле свертки

Задача 8. Пусть x и h — независимые случайные величины, распределенные по показательному закону с параметром . Вычислить плотность суммы .

Решение. Так как x и h распределены по показательному закону с параметром , то их плотности равны

Следовательно,

Поэтому

Если x<0, то в этой формуле аргумент у функции отрицателен, и потому . Поэтому Если же , то имеем:

Таким образом, мы получили ответ:

Задачи для самостоятельного решения

Теоретические задачи.

Найти плотности распределения: а) суммы; б) разности; в) произведения; г) частного двух случайных величин, имеющих равномерное распределение на [0; а]. Случайная величина x имеет нормальное распределение с параметрами а и s2. Показать, что величина нормально распределена с параметрами 0 и 1. Случайные величины x1 и x2 независимы и имеют нормальные распределения с параметрами а1, и а2, соответственно. Доказать, что x1 + x2 имеет нормальное распределение. Случайные величины x1, x2, ... xn распределены и независимы и имеют одинаковую функцию плотности распределения

.

Найти функцию распределения и плотность распределения величин:

а) h1 = min {x1 , x2, ...xn} ; б) h(2) = max {x1,x2, ... xn }

Случайные величины x1, x2, ... xn независимы и равномерно распределены на отрезке [а, b]. Найти функции распределения и функции плотности распределения величин

x(1) = min {x1,x2, ... xn} и x(2)= max{x1, x2, ...xn}.

Доказать, что М .

Случайная величина распределена по закону Коши Найти: а) коэффициент а; б) функцию распределения; в) вероятность попадания на интервал (-1, 1). Показать, что математическое ожидание x не существует. Случайная величина подчинена закону Лапласа с параметром l (l>0): Найти коэффициент а; построить графики плотности распределения и функции распределения; найти Mx и Dx; найти вероятности событий {|x|< и {çxç<}. Случайная величина x подчинена закону Симпсона на отрезке [-а, а], т. е. график её плотности распределения имеет вид :

Написать формулу для плотности распределения, найти Мx и Dx.

Вычислительные задачи.

Случайная точка А имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния r точки до центра круга. Показать, что величина r2 равномерно распределена на отрезке [0, R2]. Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:
Вычислить константу C, функцию распределения F(x), , дисперсию и вероятность Случайная величина имеет функцию распределения

Вычислить плотность случайной величины, математическое ожидание, дисперсию и вероятность Проверить, что функция =
может быть функцией распределения случайной величины. Найти числовые характеристики этой величины: Mx и Dx. Случайная величина равномерно распределена не отрезке [2 ; 6]. Выписать плотность распределения. Найти функцию распределения. Найти вероятность попадания случайной величины на отрезок [2, 5] и на отрезок [5; 7]. Плотность распределения x равна

.

Найти постоянную с, плотность распределения h = и вероятность

Р (0,25<h<0,64).

Время безотказной работы ЭВМ распределено по показательному закону с параметром l = 0,05 (отказа в час), т. е. имеет функцию плотности

р(х) =.

Решение определенной задачи требует безотказной работы машины в течение 15 минут. Если за время решения задачи произошел сбой, то ошибка обнаруживается только по окончании решения, и задача решается заново. Найти: а) вероятность того, что за время решения задачи не произойдет ни одного сбоя; б) среднее время, за которое будет решена задача.

Стержень длины 24 см ломают на две части; будем считать, что точка излома распределена равномерно по всей длине стержня. Чему равна средняя длина большей части стержня? Отрезок длины 12 см случайным образом разрезается на две части. Точка разреза равномерно распределена по всей длине отрезка. Чему равна средняя длина малой части отрезка? Случайная величина равномерно распределена на отрезке [1,3]. Найти плотность распределения случайной величины . Случайная величина равномерно распределена на отрезке [-1,1]. Найти плотность распределения случайной величины Случайная величина имеет функцию распределения

Найти функцию распределения случайной величины Случайная величина x имеет стандартное нормальное распределение (с параметрами а = 0 и s2 = 1). Найти плотность случайной величины . Случайная величина x имеет показательное распределение с параметром l. Найти функции плотности распределения случайных величин:

а) h1= lx ; б) h2 =x2; в) h3= г) .

Случайная величина x равномерно распределена на отрезке [0, 1]. Найти плотности распределения случайных величин:

а) h1 = 2x + 1; б) h2 =-ln(1-x); в) h3 = .

Показать, что если x имеет непрерывную функцию распределения

F(x) = P(x<x), то случайная величина h= F(x) имеет равномерное распределение на отрезке [0, 1].

Найти функцию плотности и функцию распределения суммы двух независимых величин x и h c равномерными законами распределения на отрезках [1, 3] и [0; 1] соответственно. Случайные величины x и h независимы и равномерно распределены на отрезках [0, 2] и [3,4] соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках [0, 4] и [1,2] соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках [1, 3] и [2,4] соответственно. Вычислить плотность суммы x+h. Случайные величины независимы и имеют показательное распределение с плотностью . Найти плотность распределения их суммы. Найти распределение суммы независимых случайных величин x и h, где x имеет равномерное на отрезке [0;1] распределение, а h имеет показательное распределение с параметром l. Найти Р, если x имеет: а) нормальное распределение с параметрами а и s2 ; б) показательное распределение с параметром l; в) равномерное распределение на отрезке [-1;1]. Совместное распределение x, h является равномерным в квадрате
К ={х, у): |х| +|у|£ 2}. Найти вероятность. Являются ли x и h независимыми? Пара случайных величин x и h равномерно распределена внутри треугольника K=. Вычислить плотность x и h. Являются ли эти случайные величины независимыми? Найти вероятность . Случайные величины x и h независимы и равномерно распределены на отрезках [0,1] и [-1,1]. Найти вероятность . Двумерная случайная величина (x, h) равномерно распределена в квадрате с вершинами (2,0), (0,2), (-2, 0), (0,-2). Найти значение совместной функции распределения в точке (1, -1). Случайный вектор (x, h) равномерно распределен внутри круга радиуса 3 с центром в начале координат. Написать выражение для совместной плотности распределения. Определить, зависимы ли эти случайные величины. Вычислить вероятность . Пара случайных величин x и h равномерно распределена внутри трапеции с вершинами в точках (-6,0), (-3,4), (3,4), (6,0). Найти совместную плотность распределения для этой пары случайных величин и плотности составляющих. Зависимы ли x и h? Случайная пара (x, h) равномерно распределена внутри полукруга . Найти плотности x и h, исследовать вопрос об их зависимости. Совместная плотность двух случайных величин x и h равна .
Найти плотности x, h. Исследовать вопрос о зависимости x и h. Случайная пара (x, h) равномерно распределена на множестве . Найти плотности x и h, исследовать вопрос об их зависимости. Найти М(xh). Случайные величины x и h независимы и распределены по показательному закону с параметром Найти



Подпишитесь на рассылку:

Проекты по теме:

Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.