Лекция №6 Площадь круга

Лекция №6 Площадь круга

Окружности требуют более аккуратного подхода и встречаются в заданиях B3 гораздо реже. Все, что требуется в таких заданиях — это найти радиус окружности R. Затем можно вычислить площадь круга по формуле S = πR2. Из этой формулы также следует, что для решения достаточно найти R2.

Чтобы найти указанные величины, достаточно указать на окружности точку, лежащую на пересечении линий сетки. А затем воспользоваться теоремой Пифагора. Рассмотрим конкретные примеры вычисления радиуса:

Задача

Найти радиусы трех окружностей, изображенных на рисунке:

Окружности на координатной сетке

Решение

Выполним дополнительные построения в каждой окружности:

Радиусы окружностей на координатной сетке

В каждом случае точка B выбрана на окружности таким образом, чтобы лежать на пересечении линий сетки. Точка C в окружностях 1 и 3 дополняют фигуру до прямоугольного треугольника. Осталось найти радиусы:

Рассмотрим треугольник ABC в первой окружности. По теореме Пифагора: R2 = AB2 = AC2 + BC2 = 22 + 22 = 8.

Для второй окружности все очевидно: R = AB = 2.

Третий случай аналогичен первому. Из треугольника ABC по теореме Пифагора: R2 = AB2 = AC2 + BC2 = 12 + 22 = 5.

Ответ R12 = 8; R2 = 2; R32 = 5.

Теперь мы знаем, как искать радиус окружности (или хотя бы его квадрат). А следовательно, можем найти площадь. Встречаются задачи, где требуется найти площадь сектора, а не всего круга. В таких случаях легко выяснить, какую часть круга составляет этот сектор, и таким образом найти площадь.

Задача 1

Найти площадь S закрашенного сектора. В ответе укажите S/π.

Сектор в окружности

Решение

Очевидно, сектор составляет одну четверть круга. Следовательно, S = 0,25 · Sкруга.

Остается найти Sкруга — площадь круга. Для этого выполним дополнительное построение:

Вычисление радиуса окружности

Треугольник ABC — прямоугольный. По теореме Пифагора имеем: R2 = AB2 = AC2 + BC2 = 22 + 22 = 8.

Теперь находим площади круга и сектора: Sкруга = πR2 = 8π; S = 0,25 · Sкруга = 2π.

Наконец, искомая величина равна S/π = 2. Ответ 2

Площадь сектора при неизвестном радиусе

По условию, нам дан круг определенной площади (именно площади, а не радиуса!). Затем внутри этого круга выделяется сектор, площадь которого и требуется найти.

Хорошая новость состоит в том, что подобные задачи — самые легкие из всех задач на площади, которые бывают в ЕГЭ по математике. К тому же, круг и сектор всегда помещается на координатную сетку. Поэтому, чтобы научиться решать такие задачи, просто взгляните на картинку:

Разделение круга на 8 равных частей

Пусть исходный круг имеет площадь Sкруга = 80. Тогда его можно разделить на два сектора площадью S = 40 каждый (см. 2 шаг). Аналогично, каждый из этих секторов-«половинок» можно снова разделить пополам — получим четыре сектора площадью S = 20 каждый (см. 3 шаг). Наконец, можно разделить каждый из этих секторов еще на два — получим 8 секторов-«ошметков». Площадь каждого из этих «ошметков» составит S = 10.

Обратите внимание: более мелкого разбиения ни в одной задаче ЕГЭ по математике нет! Таким образом, алгоритм решения задачи B-3 следующий:

Разрезать исходный круг на 8 секторов-«кусков». Площадь каждого из них составляет ровно 1/8 часть площади всего круга. Например, если по условию круг имеет площадь Sкруга = 240, то «куски» имеют площадь S = 240 : 8 = 30; Выяснить, сколько «кусков» помещается в исходном секторе, площадь которого требуется найти. Например, если в нашем секторе помещается 3 «куска» площадью 30, то площадь искомого сектора равна S = 3 · 30 = 90. Это и будет ответ.

Задача1.

На клетчатой бумаге нарисован круг, площадь которого равна 40. Найдите площадь заштрихованной фигуры.

Круг площадью 40

Решение

Итак, площадь круга равна 40. Разделим его на 8 секторов — каждый площадью S = 40 : 5 = 8. Получим:

8 секторов площадью 5 каждый

Очевидно, закрашенный сектор состоит ровно из двух секторов-«ошметков». Следовательно, его площадь равна 2 · 5 = 10. Вот и все решение!

Ответ 10

Задача2

На клетчатой бумаге нарисован круг, площадь которого равна 64. Найдите площадь заштрихованной фигуры.

Круг площадью 64

Решение

Снова разделим весь круг на 8 равных секторов. Очевидно, что площадь одного их них как раз и требуется найти. Следовательно, его площадь равна S = 64 : 8 = 8.

Ответ 8

Задача 3

На клетчатой бумаге нарисован круг, площадь которого равна 48. Найдите площадь заштрихованной фигуры.

Круг площадью 48

Решение

Опять разделим круг на 8 равных секторов. Площадь каждого из них равна S = 48 : 8 = 6. В искомом секторе помещается ровно три сектора-«ошметка» (см. рисунок). Следовательно, площадь искомого сектора равна 3 · 6 = 18.

8 секторов площадью 6 каждый

Ответ18

Тренировочный материал к лекции №6

№1.Найдите (в см2) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). В ответе запишите \frac S\pi.

pic.222 2.pic.2243. b-5.eps

251201. Найдите (в см2) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). В ответе запишите \frac{S}{\pi}.

b-319.eps251203b-321.eps2561207. b-325.epsb7-1.eps

263477. b7-59.eps263481.b7-63.eps

27599. Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

MA.OB10.B6.18/innerimg0.jpg

55655. Найдите площадь сектора круга радиуса 6, длина дуги которого равна 3.

27597. Площадь круга равна \frac{1}{\pi }. Найдите длину его окружности. MA.OB10.B6.16/innerimg0.jpg

555557. Площадь круга равна \frac{196}{\pi}. Найдите длину его окружности.

5301. Найдите (в см2) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). В ответе запишите \frac S\pi.pic.220

27642. Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны \frac{4}{\sqrt{\pi }} и \frac{2}{\sqrt{\pi }}. MA.OB10.B6.61/innerimg0.jpg

55505. Найдите площадь круга, длина окружности которого равна 37\sqrt{\pi}.

27598.Найдите площадь сектора круга радиуса \frac{1}{\sqrt{\pi }}, центральный угол которого равен 90^\circ

MA.OB10.B6.17/innerimg0.jpg

Материал для зачета по теме «Площади»

Теоретическая часть

1.  Запишите формулы для нахождения площади:


1)треугольника;

2)прямоугольника;

3) параллелограмма;

4)трапеции;

5) круга;

6) площадь ромба


Практическая часть

2. В3.27555. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

pic.233 27558. pic.110 pic.99 pic.228

27566. Найдите площадь треугольника, вершины которого имеют координаты (0;0), (10;7), (7;10).

p10/p10.4327570. p2/p2.11527499. p5-1-1/p5-1-1.1217

27574. Найдите площадь параллелограмма, изображенного на рисунке. (ромба)

p5-1-1/p5-1-1.1227580. p6/p6.196

244986. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

prot_b6_205.eps248779.b5.eps 250887. b-5.eps В ответе запишите \frac{S}{\pi}.

263421. Найдите (в см2) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times1 см (см. рис.). В ответе запишите \frac{S}{\pi}.

b7-3.eps 5297. pic.2165303. pic.222

27642. Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны \frac{4}{\sqrt{\pi }} и \frac{2}{\sqrt{\pi }}.



Подпишитесь на рассылку:

Проекты по теме:

Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.