Индивидуальная траектория подготовки участника III этапа школьной олимпиады по математике



Индивидуальная траектория подготовки

участника III этапа школьной олимпиады по математике

ученика 10-а класса

МКОУ СОШ № 10

села Юца

Толмасова Анатолия


Учитель математики

высшей категории



2012

Юца

Овладение любой современной профессией требует определенных математических знаний. Представление о роли математики в современном мире, математические знания стали необходимым компонентом общей культуры. Для жизненной самореализации, возможности продуктивной деятельности в информационном мире требуется достаточно прочная математическая подготовка.

Роль и место математики в науке и жизнедеятельности общества, ценность математического образования, понимание предмета математики, структура личности обучающегося обуславливает цели математического образования. Выделяют три группы целей, соотнося их с общеобразовательными, воспитательными и практическими функциями. Олимпиады являются одной из наиболее массовых форм внеурочной работы по математике.

Целями подготовки к математическим олимпиадам являются:

  • расширение кругозора учащихся;
  • развитие интереса учащихся к изучению математики;
  • повышение математической культуры, интеллектуального уровня учащихся;
  • выявление учащихся, способных к математике, для организации индивидуальной работы с ними.

Олимпиады готовят учащихся к жизни в современных условиях, в условиях конкуренции. Умение решать задачи, особенно олимпиадные, всегда являлось одним из показателей математической одаренности ученика.

Школа сегодня уже не является монопольным источником информации, знаний, умственного развития учащихся. В частности, большой вклад в их обучение вносит система дополнительного образования детей. Поэтому результаты, достигаемые учащимися в мероприятиях, проводимых в данной системе, должны учитываться при определении перспектив дальнейшего обучения.


Программа подготовки к III этапу школьной олимпиады.

Модуль 1. Арифметические задачи. Решение олимпиадных задач с целыми числами.

Условие:

Найдите сумму всех трехзначных натуральных чисел n, таких, что первая и последняя цифры числа n^2 равны 1

Решение:

Последняя цифра квадрата - 1, значит последняя цифра самого числа - 9 либо 1.
100<=n<=999
10000<=n^2<999999
Если n^2 пятизначное, то, учитывая, что первая цифра квадрата - 1,
10000<=n^2<=19999
100<=n<=141 => 101, 109, 111, 119, 121, 129, 131, 139, 141
Если n^2 шестизначное, то, учитывая, что первая цифра квадрата - 1,
100000<=n^2<=199999
316<n<448
319,441 и пары 32x, 33x, 34x, 35x, 36x, 37x, 38x, 39x, 40x, 41x, 42x, 43x, где x - 1,9. Сумма каждой пары даст 650, 670, ... , 870
Суммируем парами: 210+230+250+270+141=(по арифм. прогрессии)=141+960=1101
319+441+650+...+870=319+441+(650+870)/2*12=9120+319+441=9120+760=9880

Итого: 9880+1101=10981

Ответ:

10981



Модуль 2. Уравнения и неравенства. Нестандартные методы решения систем уравнений и неравенств

Условие:

Решить неравенство:
log2((7−x2−3)*(7^−x2+16−1))+log2((7−x2−3)/(7^−x2+16−1)) > log2(77-x2-2)2

Решение:

На самом деле, это неравенство значительно проще, чем кажется на первый взгляд.
Разберёмся с ОДЗ:
1. Выражение под первым знаком логарифма должно быть больше нуля:
(7^(-(x^2))-3)*(7^(-(x^2)+16)-1) > 0
-x^2 всегда меньше или равно нулю, следовательно,
7^(-x^2) <= 1, следовательно,
7^(-x^2)-3 <= -2 < 0
Значит, чтобы первое условие на ОДЗ выполнялось, нужно, чтобы
7^(-(x^2)+16)-1 < 0
7^(-(x^2)+16) < 1 = 7^0
-(x^2)+16 < 0
x^2 > 16
x принадлежит (-бесконечность; -4) U (4, +бесконечность)
2. Выражение под вторым знаком логарифма должно быть больше нуля. Но там результат будет такой же, как и в первом пункте, поскольку в скобках стоят одинаковые выражения.
3. Выражение под третьим знаком логарифма должно быть больше нуля.
(7^(7-x^2)-2)^2 > 0
Это неравенство всегда справедливо, за исключением случая, когда
7^(7-x^2)-2 = 0
7^(7-x^2) = 7^(log_7(2))
7-x^2 = log_7(2)
x^2 = 7 - log_7(2)
x = (+-)sqrt(7-log_7(x))
Оценим, чему примерно равно sqrt(7-log_7(x)).
1/3 = log_8(2) < log_7(2) < log_4(2) = 1/2
2 = sqrt(4) < sqrt(7-1/2) < sqrt(7-log_7(2)) < sqrt(7-1/3) < sqrt(9) = 3
То есть, условие x не равно (+-)sqrt(7-log_7(x)) уже лишнее, поскольку в п. (1) мы уже выбросили из ОДЗ включающий эти точки интервал.
Итак, ещё раз ОДЗ:
x принадлежит (-бесконечность; -4) U (4, +бесконечность)
4. Теперь, пользуясь свойствами логарифма, исходное неравенство можно преобразовать вот так:
log_2((7^(-x^2)-3)^2) > log_2((7^(7-x^2)-2)^2)
log_2(x) - функция возрастающая, поэтому избавляемся от логарифма, не меняя знак:
(7^(-x^2)-3)^2 > (7^(7-x^2)-2)^2
Оценим сверху и снизу выражения (7^(-x^2)-3)^2 и (7^(7-x^2)-2)^2, принимая во внимание ОДЗ:
-x^2 < -16
0 < 7^(-x^2) < 1
-3 < 7^(-x^2)-3 < -2
4 < (7^(-x^2)-3)^2 < 9
-x^2 < -16
0 < 7^(7-x^2) < 1
-2 < 7^(-x^2)-2 < -1
1 < (7^(-x^2)-3)^2 < 4
Значит, неравенство выполняется для любых x, принадлежащих ОДЗ.

Ответ:

(−∞; -4) ∪ (4; +∞)

Модуль 3. Параметры и модули. Решение уравнений и неравенств с модулем. Методы решений уравнений и неравенств с параметром

Условие:

Найдите все положительные значения параметра а, при каждом из которых уравнение аx= x имеет единственное решение.

Решение:

Пусть f(x) = a^x, g(x) = x.

Функция g(x) - непрерывная, строго возрастающая на всей области определения и может принимать любое значение от минус бесконечности до плюс бесконечности.

При 0 < a < 1 функция f(x) - непрерывная, строго убывающая на всей области определения и может принимать значения в интервале (0;+бесконечность). Поэтому при любых таких a уравнение f(x) = g(x) имеет ровно одно решение.


При a = 1 функция f(x) тождественно равна единице, и уравнение f(x) = g(x) также имеет единственное решение x=1.
При a > 1:
Производная функции h(x) = (a^x-x) равна
(a^x-x)' = a^x*ln(a)-1
Приравняем её к нулю:
a^x*ln(a) = 1
a^x = 1/ln(a)
x = -log_a(ln(a)).

У производной единственный ноль. Слева от этого значения функция h(x) убывает, справа - возрастает. 

Поэтому она либо вообще не имеет нулей, либо имеет два нуля. И один корень она имеет только в том случае, когда он совпадает с найденным экстремумом.

То есть, нам требуется найти такое значение a, при котором функция
h(x) = a^x-x достигает экстремума и обращается в ноль в одной и той же точке. Иными словами, когда прямая y=x является касательной к графику функции a^x.


То есть a^x = x
a^x*ln(a) = 1
Подставляем a^x = x во второе уравнение:
x*ln(a) = 1, откуда ln(a)=1/x, a = e^(1/x).
Снова подставляем во второе уравнение:
(e^(1/x))^x*(1/x) = 1
e^1 = x
x = e.
А это подставляем в первое уравнение:
a^e = e
a = e^(1/e)

Ответ:

(0;1] ∪ {e(1/e)}


Модуль 4. Логические задачи повышенной сложности. Принцип Дирихле

Условие

В шахматном турнире каждый участник сыграл с каждым две партии: одну белыми фигурами, другую - черными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью - 1/2 очка, за поражение - 0 очков). 
Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

Решение

Всего в турнире были сыграны n(n-1) партий, и в каждой разыгрывалось 1 очко. Поэтому при равенстве всех результатов участники набрали по n-1 очку. Каждый шахматист сыграл белыми n-1 партию, и количество выигранных им партий белыми равно одному из n чисел: 0, ..., n

1. Предположим, что утверждение задачи неверно: все выиграли разное число партий белыми. Тогда реализованы все возможные варианты от 0 до n-1.

Рассмотрим двух участников турнира: A, выигравшего n-1 партию белыми, и B, не выигравшего ни одной такой партии. Разберемся, каким мог быть результат партии, которую A играл против B черными. С одной стороны, A набрал n-1 очко, играя белыми, так что все свои партии черными, в том числе и эту, он должен был проиграть. Но B не выиграл белыми ни одной партии, значит, не мог выиграть и эту. Противоречие.


Модуль 5. Решение нестандартных геометрических задач

Условие

Две окружности радиусов r и p (r < p) касаются внешним образом, а также обе касаются внутренним образом окружности радиуса R. Известно, что треугольник с вершинами в центрах окружностей является равнобедренным, а угол между боковыми сторонами больше . Найдите длину основания этого треугольника.

Подсказка

Против большего угла треугольника лежит большая сторона.

Решение

Пусть окружность с центром O1 радиуса r и окружность с центром O2 радиуса p касаются между собой в точке C, а окружности с центром O радиуса R — в точках A и B соответственно.

Поскольку линия центров двух касающихся окружностей проходит через точку их касания, то O1O2 = r + p, OO1 = R - r, OO2 = R - p.

Стороны OO1 = R - r и OO2 = R - p не могут быть боковыми, т.к. тогда R - r = R - p    r = p, что противоречит условию r < p. Поэтому одной из боковых сторон является сторона O1O2 = r + p.

Угол между боковыми сторонами равнобедренного треугольника O1OO2 больше 60o. Значит, углы при основании — меньше 60o. Поскольку против большего угла треугольника лежит большая сторона, то основание равнобедренного треугольника O1OO2 равно наибольшей из величин R - r и R - p, а т.к. r < p, то R - r > R - p. Значит, OO1 = R - r — наибольшая сторона треугольникаO1OO2.

Следовательно, основание треугольника равно R - r.

Ответ

R - r.


Модуль 6. Последовательности и прогрессии. Решение олимпиадных задач

Условие

Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами. Верно ли, что её двадцатый член также является натуральным числом? 

Решение

Ответ: да, верно. Пусть a1, a2, ..., an, ... - данная геометрическая прогрессия, q - её знаменатель. По условию a1, a10=a1q9 и a30=a1q29 - натуральные числа. Поэтому q9 и q29 - положительные рациональные числа. Отсюда следует, что q2=q29/(q9)3 - положительное рациональное число и q=q9/(q2)4 также положительное рациональное число.

Пусть q=m/n, где m и n - натуральные взаимно простые числа. Число a30=a1m29/n29 натуральное, m29 и n29 взаимно просты, следовательно, a1 делится на n29. Отсюда получаем, чтоa20=a1q19=a1m19/n19 - число натуральное.




Подпишитесь на рассылку:


Вычисление
это получение из входных данных нового знания

Проекты по теме:

Педагогика
Математика
Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.