Тема «Сжатие звуковой информации» (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Экономический факультет

Кафедра «Прикладная информатика»

САМОСТОЯТЕЛЬНАЯ

КОНТРОЛИРУЕМАЯ РАБОТА

по дисциплине «Мультимедиа»

Тема «Сжатие звуковой информации»

Выполнил:

студент группы 2ПО

Проверил:

доцент кафедры ПИ,

к. т.н., доцент

Ставрополь, 2011

СЖАТИЕ ЗВУКОВОЙ ИНФОРМАЦИИ

Общие сведения

При первичном кодировании в студийном тракте используется об равномерное квантование отсчетов звукового сигнала (ЗС) с разрешением ∆А=16...24 бит/отсчет при частоте дискретизации f = 44,1...96 кГц. В каналах студийного качества обычно

∆А =16 бит/отсчет, f = 48 кГц, полоса частот кодируемого звукового сигнала

∆F = 20...20000 Гц. Динамический диапазон так цифрового канала составляет около 54 дБ. Если f = 48 кГц и ∆А =16 бит/отсчет, то скорость цифрового потока при передаче одного такого сигнала равна V= 48x16 = 768 кбит/с. Это требует суммарной пропускной способности канал связи при передаче звукового сигнала форматов 5.1 (Dolby Digital) или 3/2 плюс канал сверхнизких частот (Dolby Surround, Dolby-Pro-Logic, Dolby THX) более 3,840 Мбит/с. Но человек способен своими органами чувств сознательно обрабатывать лишь около 100 бит/с информации. Поэтому можно говорить о присущей сущей первичным цифровым звуковым сигналам значительной избыточности

Различают статистическую и психоакустическую избыточность первичных цифровых сигналов. Сокращение статистической избыточности базируется на учете свойств самих звуковых сигналов, а психоакустичсской - на учете свойств слухового восприятия.




Статистическая избыточность обусловлена наличием корреляционной связи между соседними отсчетами временной функции звукового сигнала при его дискретизации. Для ее уменьшения применяют достаточно сложные алгоритмы обработки. При их использовании потери информации нет, однако исходный сигнал оказывается представленным в более компактной форме, что требует меньшего количества бит при его кодировании. Важно, чтобы все эта алгоритмы позволяли бы при обратном преобразовании восстанавливать исходные сигналы без искажений. Наиболее часто для этой цели используют ортогональные преобразования. Оптимальным с этой точки зрения является преобразование Карунена - Лоэва. Но его реализация требует существенных вычислительных затрат. Незначительно по эффективности ему уступает модифицированное дискретное косинусное преобразование (МДКП). Важно также, что для реализации МДКП разработаны быстрые вычислительные алгоритмы. Кроме того, между коэффициентами преобразования Фурье (к которому мы все привыкли) и коэффициентами МДКП существует простая связь, что позволяет представлять результаты вычислений в форме, достаточно хорошо согласующейся с работой механизмов слуха. Дополнительно уменьшить скорость цифрового потока позволяют также методы кодирования, учитывающие стати звуковых сигналов (например, вероятности появления уровней звукового нала разной величины). Примером такого учета являются коды Хаффмана где наиболее вероятным значениям сигнала приписываются более короткие кодовые слова, а значения отсчетов, вероятность появления которых мала кодируются кодовыми словами большей длины. Именно в силу этих двух причин в наиболее эффективных алгоритмах компрессии цифровых аудиоданных кодирование подвергаются не сами отсчеты ЗС, а коэффициенты МДКП, и для их кодирования используются кодовые таблицы Хаффмана. Заметим, что число таких таблиц достаточно велико и каждая из них адаптирована к звуковому сигналу определенного жанра.




Однако даже при использовании достаточно сложных процедур обработки устранение статистической избыточности звуковых сигналов позволяет в конечном итоге уменьшить требуемую пропускную способность канала связи лишь 15...25% по сравнению с ее исходной величиной, что никак нельзя считать революционным достижением.

После устранения статистической избыточности скорость цифрового пока при передаче высококачественных ЗС и возможности человека по их обработке отличаются, по крайней мере, на несколько порядков. Это свидетельствует также о существенной психоакустической избыточности первичных цифровых ЗС и, следовательно, о возможности ее уменьшения. Наиболее перспективными с этой точки зрения оказались методы, учитывающие такие свойства слуха, как маскировка, предмаскировка и послемаскировка. Если известно, какие доли (части) звукового сигнала ухо воспринимает, а какие нет вследствие маскировки, то можно вычленить и затем передать по каналу связи лишь те части сигнала, которые ухо способно воспринять, а неслышимые доли (составляющие исходного сигнала) можно отбросить (не передавать по каналу связи). Кроме того, сигналы можно квантовать с возможно меньшим разрешением по уровню, так, чтобы искажения квантования, изменясь по величине с изменением уровня самого сигнала, еще оставались бы неслышимыми, т. е. маскировались бы ис­ходным сигналом. Однако, после устранения психоакустической избыточности точное восстановление формы временной функции ЗС при декодировании оказывается уже невозможным.




В этой связи следует обратить внимание на две очень важные для практики особенности. Если компрессия цифровых аудиоданных уже использовалась ранее в канале связи при доставке программы, то ее повторное применение часто ведет к появлению существенных искажений, хотя исходный сигнал кажется нам на слух вполне качественным перед повторным кодированием. Поэтому очень важно знать «историю» цифрового сигнала, и какие методы кодирования при его передаче уже использовались ранее. Если измерять традиционными методами параметры качества таких кодеков на тональных сигналах (как это часто и делается), то мы будем для них получать при разных, даже самых малых установленных значениях скорости цифрового потока, практически идеальные величины измеряемых параметров. Результаты же тестовых прослушиваний для них, выполненные на реальных звуковых сигналах, будут принципиально отличаться Иными словами, традиционные методы оценки качества для кодеков с компрессией цифровых аудиоданных не пригодны.

Работы по анализу качества и оценке эффективности алгоритмов компрессии цифровых аудиоданных с целью их последующей стандартизации начались в 1988 году, когда была образована международная экспертная группа MPEG ( Moving Pictures Experts Group). Итогом работы этой группы на первом этапе явилось принятие в ноябре 1992 года международного, стандарта MPEG 1 ISO/IEC 11172-3 (здесь и далее цифра 3 после номера стандарта относится к той его части, где речь идет о кодировании звуковых сигналов).

К настоящему времени достаточное распространение в радиовещании получили также еще нескольких стандартов MPEG, таких, как MPEG-2 ISO/IEC 13818-3, 13818-7 и MPEG-4 ISO/IEC 14496-3.




В отличие от этого в США был разработан стандарт Dolby АС-3 (ад/52) качестве альтернативны стандартам MPEG. Несколько позже четко сформировались две разные платформы цифровых технологий для радиовещания и телевидения - это DAB (Digital Audio Broadcasting), DRM (Digital Radio Mondiale), DVB (с наземной DVB-T, кабельной DVB-C, спутниковой DVB-S разновидностями) и ATSC (Dolby АС-3). Первая из них (DAB, DRM) продвигается Европой, ATSC - США. Отличаются эти платформы, прежде всего, выбранным алгоритмом компрессии цифровых аудиоданных, видом цифровой модуляции и процедурой помехоустойчивого кодирования ЗС.

Несмотря на значительное разнообразие алгоритмов компрессии цифровых аудиоданных, структура кодера, реализующего такой алгоритм обработки сигналов, может быть представлена в виде обобщенной схемы, показанной на рис. 4.1. В блоке временной и частотной сегментации исходный звуковой сигнал разделяется на субполосные составляющие и сегментируется по времени, Длина кодируемой выборки зависит от формы временной функции звукового сигнала. При отсутствии резких выбросов по амплитуде используется так назы­ваемая длинная выборка, обеспечивающая высокое разрешение по частоте. В случае же резких изменений амплитуды сигнала длина кодируемой выборки резко уменьшается, что дает более высокое разрешение по времени. Решение об изменении длины кодируемой выборки принимает блок психоакустического анализа, вычисляя значение психоакустической энтропии сигнала. После сегментации субполосные сигналы нормируются, квантуются и кодируются. В наиболее эффективных алгоритмах компрессии кодированию подвергаются не сами отсчеты выборки ЗС, а соответствующие им коэффициенты МДКП.




Обычно при компрессии цифровых аудиоданных используется энтропийное кодирование, при котором одновременно учитываются как свойства слуха человека, так и статистические характеристики звукового сигнала. Однако основную роль при этом играют процедуры устранения психоакустической избыточности. Учет закономерностей слухового восприятия звукового сигнала выполняется в блоке психоакустического анализа. Здесь по специальной процедуре для каждого субполосного сигнала рассчитывается максимально допустимый уровень искажений (шумов) квантования, при котором они еще маскируются полезным сигналом данной субполосы. Блок динамического распределения бит в соответствии с требованиями психоакустической модели для каждой субполосы кодирования выделяет такое минимально возможное их количество при котором уровень искажений, вызванных квантованием, не превышал порога их слышимости, рассчитанного психоакустической моделью. В современных алгоритмах компрессии используются также специальные процедуры форме итерационных циклов, позволяющие управлять величиной энергии искажений квантования в субполосах при недостаточном числе доступных для кодирования бит.

Алгоритмы сжатия звука MPEG основаны на описанных в первой главе свойствах восприятия звуковых сигналов слуховым аппаратом человека. Использование эффекта маскировки позволяет существенно сократить объем звуковых данных, сохраняя приемлемое качество звучания. Принцип здесь достаточно простой: «Если какая-то составляющая не слышна, то и передавать ее не следу». На практике это означает, что в области маскирования можно снизить число битов на отсчет до такой степени, чтобы шум квантования все еще оставался ниже порога маскирования. Таким образом, для работы звукового кодера необходимо знать пороги маскирования при различных комбинациях воздействующих сигналов. Вычислением этих порогов занимается важный узел в кодере психоакустическая модель слуха (ПАМ). Она анализирует входной сигнал в последовательные отрезки времени и определяет для каждого блока отсчетов спектральные компоненты и соответствующие им области маскирования. Входной сигнал анализируется в частотной области, для этого блок отсчетов, взятых во времени, с помощью дискретного преобразования Фурье преобразуется в набор коэффициентов при компонентах частотного спектра сигнала. Разработчики кодеров компрессии имеют значительную свободу в построении модели, точность ее функционирования зависит от требуемой степени сжатия




Полосное кодирование и блок фильтров. Наилучшим методом к кодирования звука, учитывающим эффект маскирования, оказывается полосное кодирование. Сущность его заключается в следующем. Группа отсчетов входного звукового сигнала, называемая кадром, поступает на блок фильтров (БФ) который содержит, как правило, 32 полосовых фильтра. Учитывая сказанное pan критических полосах и маскировании, хорошо бы иметь в блоке фильтров полосы пропускания, по возможности совпадающие с критическими. Однако практическая реализация цифрового блока фильтров с неравными полосами достаточно сложна и оправдана только в устройствах самого высокого класса Обычно используется блок фильтров на основе квадратурно-зеркальных (W. ров с равными полосами пропускания, охватывающих с небольшим взаимным, перекрытием всю полосу слышимых частот (рис. 4.2). В этом случае полоса пропускания фильтра равна π/32T, а центральные частоты полос равны (2к + 1) π /64Т, где Т - период дискретизации;

к = 0,1,..., 31. При частоте дискретизации 48 кГц полоса пропускания секции фильтра составляет 750 Гц.

На выходе каждого фильтра оказывается та часть входного сигнала, которая попадает в полосу пропускания данного фильтра. Далее, в каждой полосе с помощью ПАМ, анализируется спектральный состав сигнала и оценивается, какую часть сигнала следует передавать без сокращений, а какая лежит ниже порога маскирования и может быть переквантована на меньшее число бит. Поскольку, в реальных звуковых сигналах максимальная энергия обычно сосредоточена точена в нескольких частотных полосах, может оказаться, что сигналы в других полосах не содержат различимых звуков и могут вообще не передаваться, личие, например, сильного сигнала в одной полосе означает, что несколько вышележащих полос будут маскироваться и могут кодироваться меньшим лом бит.




Для сокращения максимального динамического диапазона определяется максимальный отсчет в кадре и вычисляется масштабирующий множитель, который приводит этот отсчет к верхнему уровню квантования. Эта операция аналогична компандированию в аналоговом вещании. На этот же множитель умножаются и все остальные отсчеты. Масштабирующий множитель передается к декодеру вместе с кодированными данными для коррекции коэффициента передачи последнего. После масштабирования производится оценка порога маскирования и осуществляется перераспределение общего числа битов между всеми полосами.

Квантование и распределение битов. Все вышеописанные операции не сокращали заметно объем данных, они были как бы подготовительным этапом к собственно сжатию звука. Как и при компрессии цифровых видеосигналов, основное сжатие происходит в квантователе. Исходя из принятых ПАМ решений о переквантовании отсчетов в отдельных частотных полосах, квантователь меняет шаг квантования таким образом, чтобы приблизить шум квантования данной полосе к вычисленному порогу маскирования. При этом на отсчет может понадобиться вместовсего 4 или 5 битов.

Принятие решения о передаваемых компонентах сигнала в каждой частотной полосе происходит независимо от других, и требуется некий «диспетчер», который выделил бы каждому из 32 полосных сигналов часть из общего ресурса битов, соответствующую значимости этого сигнала в общем ансамбле. Роль такого диспетчера выполняет устройство динамического распределения битов.

Возможны три стратегии распределения битов.




В системе с прямой адаптацией кодер производит все расчеты и посылает результаты декодеру. Преимущество данного способа в том, что алгоритм распределения битов может обновляться и изменяться, не затрагивая работы декодера. Однако для пересылки дополнительных данных декодеру расходуется заметная часть общего запаса битов.

Система с обратной адаптацией осуществляет одинаковые расчеты и в кодере, и в декодере, поэтому нет необходимости пересылать декодеру дополнительные данные. Однако сложность и стоимость декодера значительно выше, чем в предыдущем варианте, и любое изменение алгоритма требует обновления или переделки декодера.

Компромиссная система с прямой и обратной адаптацией разделяет функции расчета распределения битов между кодером и декодером таким образом, что кодер производит наиболее сложные вычисления и посылает декодеру только ключевые параметры, затрачивая на это относительно немного битов, Декодер проводит лишь несложные вычисления. В такой системе кодер не может быть существенно изменен, но настройка некоторых параметров допустим.

Обобщенная схема звукового кодера и декодера, выполняющих цифровое сжатие согласно описанному алгоритму с прямой адаптацией, приведена на рисунки 4.3,а. Сигналы на выходе частотных полос объединяются в единый цифровой поток с помощью мультиплексора.

В декодере процессы происходят в обратном порядке. Сигнал демультиплексируется, делением на масштабирующий множитель восстанавливаются исходные значения цифровых отсчетов в частотных полосах и поступают на объединяющий блок фильтров, который формирует на выходе поток звуковых данных, адекватный входному с точки зрения психофизиологического восприятия звукового сигнала человеческим ухом.




Семейство стандартов MPEG

MPEG расшифровывается как «Moving Picture Coding Experts Group», дословно - группа экспертов по кодированию подвижных изображений. MPEG ведет свою историю с января 1988 года. Начиная с первого собрания в мае 1988 года, группа начала расти, и выросла до очень большого коллектива специалистов. Обычно, в собрании MPEG принимают участие около 350 специалистов из более чем 200 компаний. Большая часть участников MPEG — это специалисты, занятые в тех или иных научных и академических учреждениях.

Стандарт MPEG-1

Стандарт MPEG-1 (ISO/IEC 11172-3) включает в себя три алгоритма различных уровней сложности: Layer (уровень) I, Layer II и Layer III. Общая структура процесса кодирования одинакова для всех уровней. Однако, несмотря схожесть уровней в общем подходе к кодированию, уровни различаются п левому использованию и внутренним механизмам. Для каждого уровня определен цифровой поток (общая ширина потока) и свой алгоритм декодирования MPEG-1 предназначен для кодирования сигналов, оцифрованных с частотой дискретизации 32, 44.1 и 48 КГц. Как было указано выше, MPEG-1 имеет три уровня (Layer I, II и Ш). Эти уровни имеют различия в обеспечиваемом коэффициенте сжатия и качестве звучания получаемых потоков. MPEG-1 нормирует для всех трех уровней следующие номиналы скоростей цифрового потока: 32, 48, 56, 64, 96, 112, 192, 256, 384 и 448 кбит/с, число уровней квантования входного сигнала - от 16 до 24. Стандартным входным ^гналом для кодера MPEG-1 принят цифровой сигнал AES/EBU (двухканальный цифровой звуковой сигнал с разрядностью квантованиябита на отчет) Предусматриваются следующие режимы работы звукового кодера:




■ одиночный канал (моно);

■ двойной канал (стерео или два моноканала);

■ joint stereo (сигнал с частичным разделением правого и левого каналов). Важнейшим свойством MPEG-1 является полная обратная совместимость всех трех уровней. Это означает, что каждый декодер может декодировать сигналы не только своего, но и нижележащих уровней.

В основу алгоритма Уровня I положен, разработанный компанией Philips для записи на компакт-кассеты, формат DCC (Digital Compact Cassette). Кодирование первого уровня применяется там, где не очень важна степень компрессии и решающими факторами являются сложность и стоимость кодера и декодера. Кодер Уровня I обеспечивает высококачественный звук при скорости цифрового потока 384 кбит/с на стереопрограмму.

Уровень II требует более сложного кодера и несколько более сложного декодера, но обеспечивает лучшее сжатие — «прозрачность» канала достигается уже при скорости 256 кбит/с. Он допускает до 8 кодирований/декодирований без заметного ухудшения качества звука. В основу алгоритма Уровня П положен популярный в Европе формат MUSICAM.

Самый сложный Уровень III включает все основные инструменты сжатия: полосное кодирование, дополнительное ДКП, энтропийное кодирование, усовершенствованную ПАМ. За счет усложнения кодера и декодера он обеспечивает высокую степень компрессии - считается, что «прозрачный» канал формируется на скорости 128 кбит/с, хотя высококачественная передача возможна и на более низких скоростях. В стандарте рекомендованы две психоакустические модели: более простая Модель 1 и более сложная, но и более высококачественная Модель 2. Они отличаются алгоритмом обработки отсчетов. Обе модели могут использоваться всех трех уровней, но Модель 2 имеет специальную модификацию для Уровня III.




MPEG -1 оказался первым международным стандартом цифрового сжатия звуковых сигналов и это обусловило его широкое применение во многих областях: вещании, звукозаписи, связи и мультимедийных приложениях. Наиболее широко используется Уровень II, он вошел составной частью в европейские спутникового, кабельного и наземного цифрового ТВ вещания, в стандарты звукового вещания, записи на DVD, Рекомендации МСЭ BS.1115 и J.52. Уровень III (его еще называют МР-3) нашел широкое применение в цифровых сетях с интегральным обслуживанием (ISDN) и в сети Интернет Подавляющее большинство музыкальных файлов в сети записаны именно в этом стандарте.

Кодер первого уровня. Рассмотрим более подробно работу кодера первого уровня (рис 4.4). Блок фильтров (БФ) обрабатывает одновременно 384 о счета звуковых данных и распределяет их с соответствующей субдискретизацией в 32 полосы, по 12 отсчетов в каждой полосе с частотой дискретизации 48/32 =1,5 кГц. Длительность кадра при частоте дискретизации 48 кГц составляет 8 мс. Упрощенная психоакустическая модель оценивает только частотное маскирование по наличию и «мгновенному» уровню компонентов сигнала в каждой полосе. По результатам оценки для каждой полосы назначается как можно более грубое квантование, но так, чтобы шум квантования не превышал порога маскирования. Масштабирующие множители имеют разрядность 6 бит и перекрывают динамический диапазон 120 дБ с шагом 2 дБ. В цифровом потоке передаются также 32 кода распределения битов. Они имеют разрядность 4 бита и указывают на длину кодового слова отсчета в данной полосе после переквантования.




В декодере отсчеты каждой частотной полосы выделяются демультиплексором и поступают на перемножитель, который восстанавливает их первоначальный динамический диапазон. Перед этим восстанавливается исходная разрядность отсчетов — отброшенные в квантователе младшие разряды заменяются нулями. Коды распределения битов помогают демультиплексору разделить в последовательном потоке кодовые слова, принадлежащие разным отсчетам и передаваемые кодом с переменной длиной слова. Затем отсчеты всех 32 каналов подаются на синтезирующий БФ, который проводит повышающую дискретизацию и расставляет отсчеты должным образом во времени, восстанавливая исходную форму сигнала.

Кодер второго уровня. В кодере второго уровня устранены основные недостатки базовой модели полосного кодирования, связанные с несоответствием критических полос слуха и реальных полос БФ, из-за чего в низкочастотных участках диапазона эффект маскирования практически не использовался. Величина кадра увеличена втрое, до 24 мс при дискретизации 48 кГц, одновременно обрабатываются уже 1152 отсчета (3 субкадра по 384 отсчета). В качестве входного сигнала для ПАМ используются не полосные сигналы с выхода БФ, а спектральные коэффициенты, полученные в результате 512-точечного преобразования Фурье входного сигнала кодера. Благодаря увеличению и временной длительности кадра и точности спектрального анализа эффективность работы ПАМ возрастает.

На втором уровне применен более сложный алгоритм распределения битов. Полосы с номерами от 0 до 10 обрабатываются с четырехразрядным кодом распределения (выбор любой из 15 шкал квантования), для полос с номерами от 11 до 22 выбор сокращается до 3 разрядов (выбор одной из 7 шкал), полосы с номерами от 23 до 26 предоставляют выбор одной из 3 шкал (двухбитовый код), а полосы с номерами от 27 до 31 (выше 20 кГц) не передаются. Если шкалы квантования, выбранные для всех блоков кадра, оказываются одинаковыми, то номер шкалы передается только один раз.




Еще одно существенное отличие алгоритма второго уровня в том, что не все масштабирующие множители передаются по каналу связи. Если различие множителей трех последовательных субкадров превышает 2 дБ не более чем в течение 10% времени, передается только один набор множителей и это дает экономию расходуемых битов. Если в данной полосе происходят быстрые изменения уровня звука, передаются два или все три набора масштабирующих множителей. Соответственно декодер должен запоминать номера выбранных писал квантования и масштабирующие множители и применять их при необходимости к последующему субкадру. Кодер третьего уровня. Кодер Уровня III использует усовершенствованный алгоритм кодирования с дополнительным ДКП.

Основной недостаток кодеров второго уровня - неэффективная обработка быстро изменяющихся переходов и скачков уровня звука – устраняется благодаря введению двух видов блоков ДКП - «длинного» с 18 отсчетами и «короткого» с 6 отсчетами. Выбор режима осуществляется адаптивно путем переключения оконных функций в каждой из 32 частотных полос. Длинные блоки обеспечивают лучшее частотное разрешение сигнала со стандартными характеристиками, в то время как короткие блоки улучшают обработку быстрых переходов. В одном кадре могут быть как длинные, так и короткие блоки, однако общее число коэффициентов ДКП не изменяется, так как вместо одного длинною передаются три коротких блока. Для улучшения кодирования применяются также следующие усовершенствования.

■ Неравномерное квантование (квантователь возводит отсчеты в степень 3/4 перед квантованием для улучшения отношения сигнал-шум; соответственно, декодер возводит их в степень 4/3 для обратной линеаризации).




■ В отличие от кодеров первого и второго уровней, на третьем уровне масштабирующие множители присваиваются не каждой из 32 частотных полос БФ, а полосам масштабирования - участкам спектра, не связанным с этими полосами и примерно соответствующим критическим полосам.

■ Энтропийное кодирование квантованных коэффициентов кодом Хаффмана.

■ Наличие «резервуара битов» - запаса, который кодер создает в периоды стационарного входного сигнала.

Кодер третьего уровня более полно обрабатывает стереосигнал в формате joint stereo (MS Stereo). Если кодеры нижележащих уровней работают только в режиме кодирования по интенсивности, когда левый и правый каналы в полосах выше 2 кГц кодируются как один сигнал (но с независимыми масштабирующими множителями), кодер третьего уровня может работать и в режиме «сумма-разность», обеспечивая более высокую степень сжатия разностного канала. Стереосигнал раскладывается на средний между каналами и разностный. При этом второй кодируется с меньшей скоростью. Это позволяет несколько увеличить качество кодирования в обычной ситуации, когда каналы по фазе совпадают. Но это приводит и к резкому его ухудшению, если кодируются сигналы, по фазе не совпадающие, в частности, фазовый сдвиг практически всегда присутствует в записях, оцифрованных с аудиокассет, но встречается и на CD, особенно если сам CD был записан в свое время с аудиоленты.

В рамках третьего уровня кодирование стереосигнала допустимо еще тремя различными методами.

■ Joint Stereo (MS/IS Stereo) вводит еще один метод упрощения стереосигнала, повышающий качество кодирования на особо низких скоростях. Состоит в том, что для некоторых частотных диапазонов оставляется уже даже не разностный сигнал, а только отношение мощностей сигнала в разных каналах. Понятно, что для кодирования этой информации употребляется еще меньшая скорость. В отличие от всех остальных, этот метод приводит к потере фазовой информации, но выгоды от экономии места в пользу среднего сигнала оказы­ваются выше, если речь идет об очень низких скоростях. Этот режим по умолчанию используется для высоких частот на скоростях от 96 кбит/с и ниже (другими качественными кодерами этот режим практически не используется). Но, как уже говорилось, при применении данного режима происходит потеря фазовой информации. Кроме того, теряется также любой противофазный сигнал.




■ Dual Channel - каждый канал получает ровно половину потока и кодируется отдельно как монофонический сигнал. Метод рекомендуется главным образом в случаях, когда разные каналы содержат принципиально разные сигналы, например, текст на разных языках. Данный режим устанавливается в некоторых кодерах по требованию.

■ Stereo - каждый канал кодируется отдельно, но кодер может принять решение отдать одному каналу больше места, чем другому. Это может быть полезно в том случае, когда после отброса части сигнала, лежащей ниже порога слышимости или полностью маскируемой код не полностью заполняет выделенный для данного канала объем, и кодер имеет возможность использовать это место для кодирования другого канала. Этим, например, избегается кодирование «тишины» в одном канале, когда в другом есть сигнал. Данный режим используется на скоростях выше 192 кбит/с. Он применим и на более низких скоростях порядка кбит/с.

Основные используемые кодеры III Уровня - кодеры от фирмы XingTech, кодеры от фирмы FhG IIS, и кодеры, основанные на исходном коде ISO.

Кодеры от XingTech не отличаются высоким качеством кодирования, но вполне подойдут для кодирования электронной музыки. Благодаря своей скорости они остаются идеальными кодерами для музыки, не требующей высокого качества кодирования.

Кодеры от FhG IIS известны наивысшим качеством кодирования на низких и средних скоростях, благодаря наиболее подходящей для таких скоростей психоакустичекой модели. Из консольных кодеров данной группы наиболее предпочтителен 13епс 2.61. Пока также используется кодер mр3епс 3.1, но последний никто всерьез не тестировал. Другие кодеры, такие, как Audio Active или МРЗ Producer, обладают значительными недостатками в основном из-за ограничения возможностей настройки и неразвитости интерфейса.




Остальные кодеры ведут свое происхождение от исходных кодов ISO. Существует два основных направления развития — оптимизация кода по скорости и оптимизация алгоритма по качеству. Первое направление наилучшим образом представлял кодер BladeEnc, в котором используется первоначальная модель ISO, но проведено много оптимизаций кода, а вторую модель представляет mpegEnc.

Кодер МР3Рго анонсирован в июле 2001 года компанией Coding Technologies вместе с Tomson Multimedia и институтом Fraunhofer. Формат МР3Рго является развитием III уровня (МРЗ). МР3Рго является совместимым с МРЗ назад (полностью) и вперед (частично), т. е. файлы, закодированные с помощью МР3Рго, можно воспроизводить в обычных проигрывателях. Однако качество звучания при этом заметно хуже, чем при воспроизведении в специальном проигрывателе. Это связано с тем, что файлы МР3Рго имеют два потока аудио, в то время как обычные проигрыватели распознают в них только один поток, т. е. обычный MPEG-1 Layer 3.

В МР3Рго использована новая технология — SBR (Spectral Band Replication). Она предназначена для передачи верхнего частотного диапазона. Дело в том, что предыдущие технологии использования психоакустических моделей имеют один общий недостаток: все они работают качественно, начиная со скорости 128 кбит/с. На более низких скоростях начинаются различные проблемы: либо для передачи звука необходимо обрезать частотный диапазон, либо кодирование приводит к появлению различных артефактов. Новая технология SBR дополняет использование психоакустических моделей. Передается (кодируется) чуть более узкий диапазон частот чем обычно (т. е. с обрезанными «верхами»), а верхние частоты воссоздаются (восстанавливаются) уже самим декодером на основе информации о более низких частотных составляющих. Таким образом, технология SBR применяется фактически не столько на стадии сжатия, сколько на стадии декодирования. Второй поток данных, о котором говорилось выше, как раз и есть та минимальная необходимая информация, которая используется при воспроизведении для восстановления верхних частот. Пока достоверно не известно, какую точно информацию несет этот поток, однако проведенные исследования показывают, что эта информация о средней мощности в нескольких полосах частот верхнего диапазона.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4



Подпишитесь на рассылку:

Сжатие в темах

Звучание

Звук

Проекты по теме:

Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.