Реферат по геометрии на тему: «Сравнение геометрии Евклида и геометрии Лобачевского»

МОУ лицей «Серпухов»

Реферат по геометрии

на тему: «Сравнение геометрии Евклида и геометрии Лобачевского»

Выполнила:

ученица 9 «Б» класса

Косолапова Екатерина

Руководитель:

2009год.

Слайд №2.

Историю древнегреческой математики можно подразде­лить на три периода: первый — необыкновенно буйное, почти стихийное развитие (Фалес, Пифагор, Демокрит), второй — период сомнений, критического отношения к новым трудам и, наконец, третий — период упорядочения результатов полученных великими учеными прошлого.

Исследования Евклида относятся ко 2 периоду.

Слайд №3.

Был мудрым Евклид,

Но его параллели,

Как будто бы вечные сваи легли.

И мысли его, что как стрелы летели,

Всегда оставались в пределах Земли.

А там, во вселенной, другие законы,

Там точками служат иные тела.

И там параллельных лучей миллионы

Природа сквозь Марс, может быть, провела.

Евклид

Имя Евклида навсегда связано с одним из ответвле­ний математики, получившим название „евклидова геометрия". Столь прочная слава закрепилась за Евклидом заслуженно, благодаря его труду „Начала". В шко­лах всего мира, долгие столетия геометрия преподава­лась по „Началам" Евклида. В английских школах до сегодняшнего дня учебники геометрии по своей форме напоминают этот ученый трактат. В мировой литературе „Начала" принадлежат к числу самых популярных и рас­пространенных математических трудов. Несмотря на столь огромную популярность Евклида как автора „Начал", сам он, его облик и жизненный путь известны очень мало. Нет исторически верных сведений о его жизни, неизвестны даже точные даты его рождения и смерти. По сведениям оставленным потомству Проклом (410—485), автором комментариев к „Началам", дея­тельность Евклида проходила во время правления Птолемея Сотера 1 (305—282 гг. до н. э.).

Велики заслуги Евклида. О том, как высоко оценены его труды, свидетельствует факт, что „Начала" оставались фундаментальным математическим трудом на протяже­нии свыше 2000 лет.

Как известно, в III веке до нашей эры греческий геометр Евклид в своей книге “Начала” сформулировал систему аксиом, из которых последовательно, одна за другой, выводятся все основные теоремы гео­метрии. И никогда не получалось двух противоречащих друг другу теорем, доказательства которых рав­ноправно вытекали бы из принятой системы аксиом. Это означает, что аксиоматика Евклида непротиво­речива.

Аксиомы евклидовой геометрии являются продуктом повседневных человеческих наблюдений, кроме одной — аксиомы о параллельных, называемой также пятым постула­том.

Слайд №4.

ü  В основе всей геометрии греческого математика Евклида лежало несколько простых первоначальных утверждений (аксиом), которые принимались за истинные без доказательств. Из аксиом путем доказательств выводились более сложные утверждения, из тех выводились еще более сложные.

ü  Особый интерес математиков всегда вызывала пятая аксиома о параллельных прямых. В отличие от остальных аксиом элементарной геометрии, аксиома параллельных не обладает свойством непосредственной очевидности. Поэтому на всем протяжении истории геометрии имели место попытки доказать аксиому параллельных, то есть вывести ее из остальных аксиом геометрии.

Слайд №5.

Лобачевский

Все! Перечеркнуты “Начала”.

Довольно мысль на них скучала,

Хоть прав почти во всем Евклид,

Но быть не вечно постоянству:

И плоскость свернута в пространство,

И мир

Иной имеет вид...

Слайд №6.

Лобачевский, Николай Иванович - великий математик, один из творцов неевклидовой геометрии. Родился 22 октября 1793 г. в Нижегородской губернии. Учился в Казанском университете; рано обратил на себя внимание успехами в математике.

Вся творческая жизнь нашего выдающегося соотечественника была связана с Казанским университетом. где он учился, затем был профессором, а с 1827г. – ректором университета. Его очень рано заинтересовала геометрия, и он, как и многие его предшественники, пытался доказать пятый постулат Евклида. Лобачевский предпринял попытку доказать пятый постулат от противного: он предположил, что через данную точку, не лежащую на данной прямой, можно провести несколько прямых, не пересекающих данную. Исходя из этого. Он попытался получить утверждение, которое противоречило бы аксиомам или полученным из них теоремам. Если бы такое утверждение удалось получить, то это означало бы, что предположение неверно, а верно противоположное утверждение: через точку, не лежащую на данной прямой, можно провести только одну прямую, не пересекающую данную. Тем самым пятый постулат Евклида был бы доказан.

Но Лобачевский не получил противоречивых утверждений. На основании этого им был сделан замечательный вывод: можно построить другую геометрию, отличную от геометрии Евклида. Такая геометрия им была построена. Её называют теперь геометрией Лобачевского. Сообщение об открытии новой геометрии было сделано Лобачевским в 1826 году.

Заменив V постулат евклидовой геометрии на аксиому, Лобачевский пришел к выводу, что можно построить другую геометрию, отличную от евклидовой. Евклид и Лобачевский рассматривали только геометрические аксиомы. Вместе с так называемыми основными понятиями они образуют фундамент для построения геометрии.

Слайд №7.

Аксиомы.

Аксиомы – это утверждения, принимаемые за истинные без доказательств. Аксиомы обычно подразделяются на две группы: общие, относящиеся ко всей математике, и геометрические.

Иногда стремятся к тому, чтобы аксиомы были независимы, т. е. ни одну из них нельзя было вывести из остальных. Но, например, утверждение аксиомы 5 может быть доказано на основе остальных аксиом, т. е. фактически это утверждение является теоремой, а не аксиомой.

Слайд № 8.

«Чем отличается геометрия Лобачевского
от геометрии Евклида?»

Евклидова аксиома о параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающие её.

Аксиома Лобачевского о параллельных прямых: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

ВЫВОД: Геометрия Лобачевского отличается от евклидовой лишь в одной аксиоме — пятой. Но главное различие кроется в понимании самой природы пространства.

Слайд № 9.

Вот о чем говорится в пятом постулате: Если две прямые а и в образуют при пересечении с третьей прямой внутренние односторонние углы a и в, сумма величин которых меньше двух прямых углов (т. е. меньше 180°; рис. 1), то эти две прямые обязательно пересекаются, причем именно с той стороны от третьей прямой, по которую расположены углы а и в (составляющие вместе менее 180°).

F:\Новая папка\1.gif

Интерпретации (модели) геометрии Лобачевского.

Геометрия Лобачевского изучает свойства "плоскости Лобачевского" (в планиметрии) и "пространства Лобачевского" (в стереометрии). Плоскость Лобачевского — это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем — расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского.

Слайд №10.

Краткое описание геометрии Лобачевского.

n  одну точку вне прямой можно провести бесконечно много прямых, параллельных данной. Это видно на рисунке. Причем параллельность сохраняется только в сторону уменьшения расстояния между прямыми. Этот, казалось бы, простой факт, меняет всю геометрию.

Слайд №11.

n  Как, например, в геометрии Евклида доказывается, что сумма углов треугольника равна 180? Классическое доказательство приведено на рисунке. Используется свойство углов при накрест лежащих прямых, и выходит, что Ð1+Ð2+Ð3=180.

Слайд № 12.

Так как в геометрии Лобачевского параллельность сохраняется только в одном направлении, то для нахождения суммы углов треугольника нужно провести две прямые, параллельные данной, в разные стороны. Понятно, что теперь сумма углов треугольника меньше 180. Эта разница была названа Лобачевским дефектом треугольника.

Слайд №13.

Для построения кривых Лобачевским было введено понятие соответственных точек. В пучке первого рода это точки на прямых, равноудаленные от центра (рис. 5а). В пучке второго рода это точки прямых, лежащие по одну сторону от оси и отстоящие от нее на одинаковые расстояния (рис. 5б). Наконец, в пучке третьего рода они расположены симметрично относительно биссектрисы полосы между двумя прямыми, на которых лежа эти точки (рис. 5в).

Слайд №14.

n  Соединив соответствующие точки первого пучка, мы получим окружность. В случае второго пучка мы получаем линию равных расстояний, а в третьем случае – так называемую предельную линию. Примеры таких построений – на рисунке.

Слайд № 15.

Приведём несколько фактов, установленных самим Лобачевским.

1)В геометрии Лобачевского не существует подобных треугольников. Более того, в геометрии Лобачевского имеет место четвертый признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

F:\Новая папка\image009.png

Слайд №16.

2)Лобачевский доказывает, что две параллельные прямые неограниченно сближаются друг с другом в сторону параллельности, но в обратном направлении они неограниченно удаляются друг от друга. А две расходящиеся прямые имеют единственный общий перпендикуляр, по обе стороны от которого они неограниченно удаляются друг от друга (б). F:\Новая папка\ris_n_7.gif

Слайд № 17.

3)Лобачевский предпринимает попытку использовать могущество формул. Применяя введенную им функцию П(х), он получает зависимости, позволяющие по сторонам треугольника вычислять его углы. И оказывается, что в любом треугольнике сумма углов меньше 180 градусов. Значит, в четырехугольнике Саккери (если его разбить диагональю на два треугольника) сумма углов меньше 360 градусов.

F:\Новая папка\ris_n_11.gif

Слайд №18.

5)Лобачевский рассмотрел пучок прямых, параллельных друг другу в одном направлении, и его ортогональные траектории, т. е. линии, которые пересекают под прямым углом все прямые данного пучка. В евклидовой геометрии тоже можно рассматривать ортогональные траектории. Например, для пучка концентрических окружностей это лучи, исходящие из центра, а для пучка параллельных прямых - перпендикулярные им прямые.

F:\Новая папка\rn13.gif

Слайд №19.

6)Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

F:\Новая папка\rn14.gif

Слайд №20.

image012

Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще. Открытие неевклидовой геометрии произвело переворот не только в геометрии и даже не только в математике, но можно сказать, в развитии человеческого мышления вообще.

Приложения.

n  Сам Лобачевский применил свою геометрию к вычислению определённых интегралов

n  В теории функций комплексного переменного геометрия Лобачевского помогла построить теорию автоморфных функций.

n  Геометрия Лобачевского находит применение также в теории чисел, в её геометрических методах, объединённых под названием «геометрия чисел».

Слайд №21.

Сравнив теорию Евклида и теорию Лобачевского, я сделала выводы: геометрия Евклида работает на маленькой поверхности, а геометрия Лобачевского на развернутой плоскости с учетом кривизны поверхности.

Как показали исследования, геометрия Лобачевского (в том числе и 5-ый постулат) совершенно верна, если ее рассматривать не на плоскости, а на поверхности гиперболического параболоида (вогнутой поверхности, напоминающей седло).

Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1.  Глейзер математики в школе. VII-VIII классы. – М.: Просвещение, 1982.

2.  Евклид. Начала. Перевод и комментарии -Волтовского. М.: Просвещение, 1950.

3.  Колесников М. Лобачевский // серия «Жизнь замечательных людей» - М. «Молодая гвардия», 1965.

4.  и его геометрия. Пособие для учащихся. – М.: Просвещение, 1970.

5.  Основания геометрии. Градштейна. М.: Просвещение, 1948.

6.  Самин великих ученых. – М.:Вече, 2002.

7.  Широков очерк основ геометрии Лобачевского // М.: Наука, 1983.



Подпишитесь на рассылку:


Вычисление
это получение из входных данных нового знания

Геометрия

Евклид




Основные темы

Проекты по теме:

Математика
Основные порталы, построенные редакторами

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Каталог авторов (частные аккаунты)

Авто

АвтосервисАвтозапчастиТовары для автоАвтотехцентрыАвтоаксессуарыавтозапчасти для иномарокКузовной ремонтАвторемонт и техобслуживаниеРемонт ходовой части автомобиляАвтохимиямаслатехцентрыРемонт бензиновых двигателейремонт автоэлектрикиремонт АКППШиномонтаж

Бизнес

Автоматизация бизнес-процессовИнтернет-магазиныСтроительствоТелефонная связьОптовые компании

Досуг

ДосугРазвлеченияТворчествоОбщественное питаниеРестораныБарыКафеКофейниНочные клубыЛитература

Технологии

Автоматизация производственных процессовИнтернетИнтернет-провайдерыСвязьИнформационные технологииIT-компанииWEB-студииПродвижение web-сайтовПродажа программного обеспеченияКоммутационное оборудованиеIP-телефония

Инфраструктура

ГородВластьАдминистрации районовСудыКоммунальные услугиПодростковые клубыОбщественные организацииГородские информационные сайты

Наука

ПедагогикаОбразованиеШколыОбучениеУчителя

Товары

Торговые компанииТоргово-сервисные компанииМобильные телефоныАксессуары к мобильным телефонамНавигационное оборудование

Услуги

Бытовые услугиТелекоммуникационные компанииДоставка готовых блюдОрганизация и проведение праздниковРемонт мобильных устройствАтелье швейныеХимчистки одеждыСервисные центрыФотоуслугиПраздничные агентства

Блокирование содержания является нарушением Правил пользования сайтом. Администрация сайта оставляет за собой право отклонять в доступе к содержанию в случае выявления блокировок.